Regularized Stokeslets solution for 2-D flow in dead-end microfiltration: Application to bacterial deposition and fouling
Dead-end microfiltration is an effective method for removing particulate matter including protozoa and bacteria in a variety of settings. As the filtered components accumulate on the filter, the flux declines during constant pressure operation necessitating periodic back-washing. It has been recentl...
Gespeichert in:
Veröffentlicht in: | Journal of membrane science 2008-06, Vol.318 (1), p.379-386 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 386 |
---|---|
container_issue | 1 |
container_start_page | 379 |
container_title | Journal of membrane science |
container_volume | 318 |
creator | Cogan, N.G. Chellam, Shankar |
description | Dead-end microfiltration is an effective method for removing particulate matter including protozoa and bacteria in a variety of settings. As the filtered components accumulate on the filter, the flux declines during constant pressure operation necessitating periodic back-washing. It has been recently reported empirically that the filtered components are not homogeneously distributed on the filter. This must be accounted for in any mathematical theory describing the filtering process. We present a method for determining the coupled fluid dynamics and bacterial transport for dead-end filtration. Results of numerical simulation indicate that the model is able to closely capture experimental data; moreover, the model predicts that the coupled system induces the experimentally observed patchy deposition patterns through spatial variability in the pore structure and porosity of the membrane. |
doi_str_mv | 10.1016/j.memsci.2008.03.012 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19918321</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0376738808002081</els_id><sourcerecordid>19914262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c368t-1e50b53ea629a5fd829dfbd3ed8d98931d958210c3dcdb89dcbfb3e0bcaf15993</originalsourceid><addsrcrecordid>eNqNkU1rGzEQhkVJoI6Tf9CDTr3tRh_etdRDwThJWzAU0uYstNLIyNWuNpI2Jfn1Wcc9l5yGGZ53YOZB6BMlNSW0vT7UPfTZ-JoRImrCa0LZB7SgYs0rThk_QwvC12215kJ8RBc5HwihayLkAj3fw34KOvkXsPhXiX8gBygZ5xim4uOAXUyYVTfYhfgX-wFb0LaCweLemxSdDyXpI_gFb8YxePPW4BJxp02B5HWYI2PM_m2u56CLU_DD_hKdOx0yXP2rS_Rwd_t7-73a_fz2Y7vZVYa3olQUGtI1HHTLpG6cFUxa11kOVlgpJKdWNoJRYrg1thPSms51HEhntKONlHyJPp_2jik-TpCL6n02EIIeIE5ZUSmp4Iy-C1yxls3g6gTOD8g5gVNj8r1Oz4oSdRSiDuokRB2FKMLVLGSOfT3FYL72yUNSMwGDAesTmKJs9P9f8Aq21JlB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19914262</pqid></control><display><type>article</type><title>Regularized Stokeslets solution for 2-D flow in dead-end microfiltration: Application to bacterial deposition and fouling</title><source>Elsevier ScienceDirect Journals</source><creator>Cogan, N.G. ; Chellam, Shankar</creator><creatorcontrib>Cogan, N.G. ; Chellam, Shankar</creatorcontrib><description>Dead-end microfiltration is an effective method for removing particulate matter including protozoa and bacteria in a variety of settings. As the filtered components accumulate on the filter, the flux declines during constant pressure operation necessitating periodic back-washing. It has been recently reported empirically that the filtered components are not homogeneously distributed on the filter. This must be accounted for in any mathematical theory describing the filtering process. We present a method for determining the coupled fluid dynamics and bacterial transport for dead-end filtration. Results of numerical simulation indicate that the model is able to closely capture experimental data; moreover, the model predicts that the coupled system induces the experimentally observed patchy deposition patterns through spatial variability in the pore structure and porosity of the membrane.</description><identifier>ISSN: 0376-7388</identifier><identifier>EISSN: 1873-3123</identifier><identifier>DOI: 10.1016/j.memsci.2008.03.012</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Bacteria ; Biofilm ; Biofouling ; Dead-end filtration ; Mathematical model ; Microfiltration ; Stokeslet ; Waste water treatment ; Water treatment</subject><ispartof>Journal of membrane science, 2008-06, Vol.318 (1), p.379-386</ispartof><rights>2008 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c368t-1e50b53ea629a5fd829dfbd3ed8d98931d958210c3dcdb89dcbfb3e0bcaf15993</citedby><cites>FETCH-LOGICAL-c368t-1e50b53ea629a5fd829dfbd3ed8d98931d958210c3dcdb89dcbfb3e0bcaf15993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.memsci.2008.03.012$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3537,27905,27906,45976</link.rule.ids></links><search><creatorcontrib>Cogan, N.G.</creatorcontrib><creatorcontrib>Chellam, Shankar</creatorcontrib><title>Regularized Stokeslets solution for 2-D flow in dead-end microfiltration: Application to bacterial deposition and fouling</title><title>Journal of membrane science</title><description>Dead-end microfiltration is an effective method for removing particulate matter including protozoa and bacteria in a variety of settings. As the filtered components accumulate on the filter, the flux declines during constant pressure operation necessitating periodic back-washing. It has been recently reported empirically that the filtered components are not homogeneously distributed on the filter. This must be accounted for in any mathematical theory describing the filtering process. We present a method for determining the coupled fluid dynamics and bacterial transport for dead-end filtration. Results of numerical simulation indicate that the model is able to closely capture experimental data; moreover, the model predicts that the coupled system induces the experimentally observed patchy deposition patterns through spatial variability in the pore structure and porosity of the membrane.</description><subject>Bacteria</subject><subject>Biofilm</subject><subject>Biofouling</subject><subject>Dead-end filtration</subject><subject>Mathematical model</subject><subject>Microfiltration</subject><subject>Stokeslet</subject><subject>Waste water treatment</subject><subject>Water treatment</subject><issn>0376-7388</issn><issn>1873-3123</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkU1rGzEQhkVJoI6Tf9CDTr3tRh_etdRDwThJWzAU0uYstNLIyNWuNpI2Jfn1Wcc9l5yGGZ53YOZB6BMlNSW0vT7UPfTZ-JoRImrCa0LZB7SgYs0rThk_QwvC12215kJ8RBc5HwihayLkAj3fw34KOvkXsPhXiX8gBygZ5xim4uOAXUyYVTfYhfgX-wFb0LaCweLemxSdDyXpI_gFb8YxePPW4BJxp02B5HWYI2PM_m2u56CLU_DD_hKdOx0yXP2rS_Rwd_t7-73a_fz2Y7vZVYa3olQUGtI1HHTLpG6cFUxa11kOVlgpJKdWNoJRYrg1thPSms51HEhntKONlHyJPp_2jik-TpCL6n02EIIeIE5ZUSmp4Iy-C1yxls3g6gTOD8g5gVNj8r1Oz4oSdRSiDuokRB2FKMLVLGSOfT3FYL72yUNSMwGDAesTmKJs9P9f8Aq21JlB</recordid><startdate>20080601</startdate><enddate>20080601</enddate><creator>Cogan, N.G.</creator><creator>Chellam, Shankar</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope></search><sort><creationdate>20080601</creationdate><title>Regularized Stokeslets solution for 2-D flow in dead-end microfiltration: Application to bacterial deposition and fouling</title><author>Cogan, N.G. ; Chellam, Shankar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c368t-1e50b53ea629a5fd829dfbd3ed8d98931d958210c3dcdb89dcbfb3e0bcaf15993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacteria</topic><topic>Biofilm</topic><topic>Biofouling</topic><topic>Dead-end filtration</topic><topic>Mathematical model</topic><topic>Microfiltration</topic><topic>Stokeslet</topic><topic>Waste water treatment</topic><topic>Water treatment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cogan, N.G.</creatorcontrib><creatorcontrib>Chellam, Shankar</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Journal of membrane science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cogan, N.G.</au><au>Chellam, Shankar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Regularized Stokeslets solution for 2-D flow in dead-end microfiltration: Application to bacterial deposition and fouling</atitle><jtitle>Journal of membrane science</jtitle><date>2008-06-01</date><risdate>2008</risdate><volume>318</volume><issue>1</issue><spage>379</spage><epage>386</epage><pages>379-386</pages><issn>0376-7388</issn><eissn>1873-3123</eissn><abstract>Dead-end microfiltration is an effective method for removing particulate matter including protozoa and bacteria in a variety of settings. As the filtered components accumulate on the filter, the flux declines during constant pressure operation necessitating periodic back-washing. It has been recently reported empirically that the filtered components are not homogeneously distributed on the filter. This must be accounted for in any mathematical theory describing the filtering process. We present a method for determining the coupled fluid dynamics and bacterial transport for dead-end filtration. Results of numerical simulation indicate that the model is able to closely capture experimental data; moreover, the model predicts that the coupled system induces the experimentally observed patchy deposition patterns through spatial variability in the pore structure and porosity of the membrane.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.memsci.2008.03.012</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0376-7388 |
ispartof | Journal of membrane science, 2008-06, Vol.318 (1), p.379-386 |
issn | 0376-7388 1873-3123 |
language | eng |
recordid | cdi_proquest_miscellaneous_19918321 |
source | Elsevier ScienceDirect Journals |
subjects | Bacteria Biofilm Biofouling Dead-end filtration Mathematical model Microfiltration Stokeslet Waste water treatment Water treatment |
title | Regularized Stokeslets solution for 2-D flow in dead-end microfiltration: Application to bacterial deposition and fouling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T09%3A22%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Regularized%20Stokeslets%20solution%20for%202-D%20flow%20in%20dead-end%20microfiltration:%20Application%20to%20bacterial%20deposition%20and%20fouling&rft.jtitle=Journal%20of%20membrane%20science&rft.au=Cogan,%20N.G.&rft.date=2008-06-01&rft.volume=318&rft.issue=1&rft.spage=379&rft.epage=386&rft.pages=379-386&rft.issn=0376-7388&rft.eissn=1873-3123&rft_id=info:doi/10.1016/j.memsci.2008.03.012&rft_dat=%3Cproquest_cross%3E19914262%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19914262&rft_id=info:pmid/&rft_els_id=S0376738808002081&rfr_iscdi=true |