A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation
The development of metal-catalysed methods to functionalize inert C–H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despit...
Gespeichert in:
Veröffentlicht in: | Nature chemistry 2018-02, Vol.10 (2), p.193-199 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 199 |
---|---|
container_issue | 2 |
container_start_page | 193 |
container_title | Nature chemistry |
container_volume | 10 |
creator | Garrison Kinney, R. Tjutrins, Jevgenijs Torres, Gerardo M. Liu, Nina Jiabao Kulkarni, Omkar Arndtsen, Bruce A. |
description | The development of metal-catalysed methods to functionalize inert C–H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel–Crafts reactions. Here we describe a new approach to palladium-catalysed C–H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C–H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.
Catalytic transformations that incorporate carbonyl functional groups in arene C–H bonds have remained limited, despite being attractive synthetic steps. Now, the intermolecular carbonylative coupling of a broad range of simple arenes into ketones has been developed. The reaction occurs through the palladium-catalysed generation of high-energy aroyl triflate electrophiles. |
doi_str_mv | 10.1038/nchem.2903 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1990486005</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990486005</sourcerecordid><originalsourceid>FETCH-LOGICAL-c416t-f8d02a2c0343da624bbc53f468b3a95e45215f11f5dcb6893f5a8af8ca7df66e3</originalsourceid><addsrcrecordid>eNp9kc9KXDEUh4NU1Go3fYAS6KZYRvN_bpYyaC0Ibtr15dzcZOba3GSa5C5mIfQdfEOfxIxjLZTSVQ6c73w5yQ-h95ScUcKb82BWdjxjmvA9dETnUs4EF_rNa83JIXqb8x0hSnKqDtAh01zqueJH6P4CL22wCTyG9TpFMCtcIh5CsWmM3prJQ8IGUhfDxkMZYsDRYUh1CC8efz1c49rp83bohy0x2FquUpyWqzpVwG_KYCoeNx6XNLiqsNjFND6rTtC-A5_tu5fzGH2_uvy2uJ7d3H75uri4mRlBVZm5picMmCFc8B4UE11nJHdCNR0HLa2QjEpHqZO96VSjuZPQgGsMzHunlOXH6NPOW1_4c7K5tOOQjfUego1TbqnWRDSKEFnRj3-hd3FKoW7Xsvp5c6UpEf-lCGOUNJpuXac7yqSYc7KuXadhhLRpKWm30bXP0bXb6Cr84UU5daPtX9HfWVXg8w7ItRWWNv258x-6Jw2ZpZ0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2022108915</pqid></control><display><type>article</type><title>A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation</title><source>SpringerLink Journals</source><source>Nature</source><creator>Garrison Kinney, R. ; Tjutrins, Jevgenijs ; Torres, Gerardo M. ; Liu, Nina Jiabao ; Kulkarni, Omkar ; Arndtsen, Bruce A.</creator><creatorcontrib>Garrison Kinney, R. ; Tjutrins, Jevgenijs ; Torres, Gerardo M. ; Liu, Nina Jiabao ; Kulkarni, Omkar ; Arndtsen, Bruce A.</creatorcontrib><description>The development of metal-catalysed methods to functionalize inert C–H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel–Crafts reactions. Here we describe a new approach to palladium-catalysed C–H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C–H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.
Catalytic transformations that incorporate carbonyl functional groups in arene C–H bonds have remained limited, despite being attractive synthetic steps. Now, the intermolecular carbonylative coupling of a broad range of simple arenes into ketones has been developed. The reaction occurs through the palladium-catalysed generation of high-energy aroyl triflate electrophiles.</description><identifier>ISSN: 1755-4330</identifier><identifier>EISSN: 1755-4349</identifier><identifier>DOI: 10.1038/nchem.2903</identifier><identifier>PMID: 29359763</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/638/403/933 ; 639/638/77/888 ; Analytical Chemistry ; Aromatic compounds ; Biochemistry ; Carbon monoxide ; Carbonyls ; Catalysis ; Catalysts ; Chemical synthesis ; Chemistry ; Chemistry/Food Science ; Friedel-Crafts reaction ; Hydrogen bonds ; Inorganic Chemistry ; Iodides ; Ketones ; Organic Chemistry ; Palladium ; Physical Chemistry ; Reagents ; Selectivity</subject><ispartof>Nature chemistry, 2018-02, Vol.10 (2), p.193-199</ispartof><rights>Springer Nature Limited 2017</rights><rights>Copyright Nature Publishing Group Feb 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c416t-f8d02a2c0343da624bbc53f468b3a95e45215f11f5dcb6893f5a8af8ca7df66e3</citedby><cites>FETCH-LOGICAL-c416t-f8d02a2c0343da624bbc53f468b3a95e45215f11f5dcb6893f5a8af8ca7df66e3</cites><orcidid>0000-0002-5861-9186 ; 0000-0002-4915-9261</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nchem.2903$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nchem.2903$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29359763$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Garrison Kinney, R.</creatorcontrib><creatorcontrib>Tjutrins, Jevgenijs</creatorcontrib><creatorcontrib>Torres, Gerardo M.</creatorcontrib><creatorcontrib>Liu, Nina Jiabao</creatorcontrib><creatorcontrib>Kulkarni, Omkar</creatorcontrib><creatorcontrib>Arndtsen, Bruce A.</creatorcontrib><title>A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation</title><title>Nature chemistry</title><addtitle>Nature Chem</addtitle><addtitle>Nat Chem</addtitle><description>The development of metal-catalysed methods to functionalize inert C–H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel–Crafts reactions. Here we describe a new approach to palladium-catalysed C–H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C–H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.
Catalytic transformations that incorporate carbonyl functional groups in arene C–H bonds have remained limited, despite being attractive synthetic steps. Now, the intermolecular carbonylative coupling of a broad range of simple arenes into ketones has been developed. The reaction occurs through the palladium-catalysed generation of high-energy aroyl triflate electrophiles.</description><subject>639/638/403/933</subject><subject>639/638/77/888</subject><subject>Analytical Chemistry</subject><subject>Aromatic compounds</subject><subject>Biochemistry</subject><subject>Carbon monoxide</subject><subject>Carbonyls</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemical synthesis</subject><subject>Chemistry</subject><subject>Chemistry/Food Science</subject><subject>Friedel-Crafts reaction</subject><subject>Hydrogen bonds</subject><subject>Inorganic Chemistry</subject><subject>Iodides</subject><subject>Ketones</subject><subject>Organic Chemistry</subject><subject>Palladium</subject><subject>Physical Chemistry</subject><subject>Reagents</subject><subject>Selectivity</subject><issn>1755-4330</issn><issn>1755-4349</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><recordid>eNp9kc9KXDEUh4NU1Go3fYAS6KZYRvN_bpYyaC0Ibtr15dzcZOba3GSa5C5mIfQdfEOfxIxjLZTSVQ6c73w5yQ-h95ScUcKb82BWdjxjmvA9dETnUs4EF_rNa83JIXqb8x0hSnKqDtAh01zqueJH6P4CL22wCTyG9TpFMCtcIh5CsWmM3prJQ8IGUhfDxkMZYsDRYUh1CC8efz1c49rp83bohy0x2FquUpyWqzpVwG_KYCoeNx6XNLiqsNjFND6rTtC-A5_tu5fzGH2_uvy2uJ7d3H75uri4mRlBVZm5picMmCFc8B4UE11nJHdCNR0HLa2QjEpHqZO96VSjuZPQgGsMzHunlOXH6NPOW1_4c7K5tOOQjfUego1TbqnWRDSKEFnRj3-hd3FKoW7Xsvp5c6UpEf-lCGOUNJpuXac7yqSYc7KuXadhhLRpKWm30bXP0bXb6Cr84UU5daPtX9HfWVXg8w7ItRWWNv258x-6Jw2ZpZ0</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Garrison Kinney, R.</creator><creator>Tjutrins, Jevgenijs</creator><creator>Torres, Gerardo M.</creator><creator>Liu, Nina Jiabao</creator><creator>Kulkarni, Omkar</creator><creator>Arndtsen, Bruce A.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-5861-9186</orcidid><orcidid>https://orcid.org/0000-0002-4915-9261</orcidid></search><sort><creationdate>20180201</creationdate><title>A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation</title><author>Garrison Kinney, R. ; Tjutrins, Jevgenijs ; Torres, Gerardo M. ; Liu, Nina Jiabao ; Kulkarni, Omkar ; Arndtsen, Bruce A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c416t-f8d02a2c0343da624bbc53f468b3a95e45215f11f5dcb6893f5a8af8ca7df66e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>639/638/403/933</topic><topic>639/638/77/888</topic><topic>Analytical Chemistry</topic><topic>Aromatic compounds</topic><topic>Biochemistry</topic><topic>Carbon monoxide</topic><topic>Carbonyls</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemical synthesis</topic><topic>Chemistry</topic><topic>Chemistry/Food Science</topic><topic>Friedel-Crafts reaction</topic><topic>Hydrogen bonds</topic><topic>Inorganic Chemistry</topic><topic>Iodides</topic><topic>Ketones</topic><topic>Organic Chemistry</topic><topic>Palladium</topic><topic>Physical Chemistry</topic><topic>Reagents</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Garrison Kinney, R.</creatorcontrib><creatorcontrib>Tjutrins, Jevgenijs</creatorcontrib><creatorcontrib>Torres, Gerardo M.</creatorcontrib><creatorcontrib>Liu, Nina Jiabao</creatorcontrib><creatorcontrib>Kulkarni, Omkar</creatorcontrib><creatorcontrib>Arndtsen, Bruce A.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Chemoreception Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Garrison Kinney, R.</au><au>Tjutrins, Jevgenijs</au><au>Torres, Gerardo M.</au><au>Liu, Nina Jiabao</au><au>Kulkarni, Omkar</au><au>Arndtsen, Bruce A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation</atitle><jtitle>Nature chemistry</jtitle><stitle>Nature Chem</stitle><addtitle>Nat Chem</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><spage>193</spage><epage>199</epage><pages>193-199</pages><issn>1755-4330</issn><eissn>1755-4349</eissn><abstract>The development of metal-catalysed methods to functionalize inert C–H bonds has become a dominant research theme in the past decade as an approach to efficient synthesis. However, the incorporation of carbon monoxide into such reactions to form valuable ketones has to date proved a challenge, despite its potential as a straightforward and green alternative to Friedel–Crafts reactions. Here we describe a new approach to palladium-catalysed C–H bond functionalization in which carbon monoxide is used to drive the generation of high-energy electrophiles. This offers a method to couple the useful features of metal-catalysed C–H functionalization (stable and available reagents) and electrophilic acylations (broad scope and selectivity), and synthesize ketones simply from aryl iodides, CO and arenes. Notably, the reaction proceeds in an intermolecular fashion, without directing groups and at very low palladium-catalyst loadings. Mechanistic studies show that the reaction proceeds through the catalytic build-up of potent aroyl triflate electrophiles.
Catalytic transformations that incorporate carbonyl functional groups in arene C–H bonds have remained limited, despite being attractive synthetic steps. Now, the intermolecular carbonylative coupling of a broad range of simple arenes into ketones has been developed. The reaction occurs through the palladium-catalysed generation of high-energy aroyl triflate electrophiles.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29359763</pmid><doi>10.1038/nchem.2903</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-5861-9186</orcidid><orcidid>https://orcid.org/0000-0002-4915-9261</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1755-4330 |
ispartof | Nature chemistry, 2018-02, Vol.10 (2), p.193-199 |
issn | 1755-4330 1755-4349 |
language | eng |
recordid | cdi_proquest_miscellaneous_1990486005 |
source | SpringerLink Journals; Nature |
subjects | 639/638/403/933 639/638/77/888 Analytical Chemistry Aromatic compounds Biochemistry Carbon monoxide Carbonyls Catalysis Catalysts Chemical synthesis Chemistry Chemistry/Food Science Friedel-Crafts reaction Hydrogen bonds Inorganic Chemistry Iodides Ketones Organic Chemistry Palladium Physical Chemistry Reagents Selectivity |
title | A general approach to intermolecular carbonylation of arene C–H bonds to ketones through catalytic aroyl triflate formation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T00%3A21%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20general%20approach%20to%20intermolecular%20carbonylation%20of%20arene%20C%E2%80%93H%20bonds%20to%20ketones%20through%20catalytic%20aroyl%20triflate%20formation&rft.jtitle=Nature%20chemistry&rft.au=Garrison%20Kinney,%20R.&rft.date=2018-02-01&rft.volume=10&rft.issue=2&rft.spage=193&rft.epage=199&rft.pages=193-199&rft.issn=1755-4330&rft.eissn=1755-4349&rft_id=info:doi/10.1038/nchem.2903&rft_dat=%3Cproquest_cross%3E1990486005%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2022108915&rft_id=info:pmid/29359763&rfr_iscdi=true |