Low‐Energy Electron‐Induced Strand Breaks in Telomere‐Derived DNA Sequences—Influence of DNA Sequence and Topology

During cancer radiation therapy high‐energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low‐energy (

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chemistry : a European journal 2018-03, Vol.24 (18), p.4680-4688
Hauptverfasser: Rackwitz, Jenny, Bald, Ilko
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4688
container_issue 18
container_start_page 4680
container_title Chemistry : a European journal
container_volume 24
creator Rackwitz, Jenny
Bald, Ilko
description During cancer radiation therapy high‐energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low‐energy (
doi_str_mv 10.1002/chem.201705889
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1990485538</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1990485538</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3259-8a5ce9c59c67a8368b127c4007afef2167dcdcb6abcf5df546cf42ab97a7e1a23</originalsourceid><addsrcrecordid>eNqFkc1uEzEURi0EoqFlyxKNxKabCf4Zj-1lSQONFMqiYW15PNdlyowd7AxVWPURWPCEfRIc0hbBpqsrXx8fffKH0CuCpwRj-tZ-gWFKMRGYS6meoAnhlJRM1PwpmmBVibLmTB2gFyldYYxVzdhzdEAV40oSNUE_luH69ubn3EO83BbzHuwmBp83C9-OFtriYhONb4t3EczXVHS-WEEfBoiQmVOI3ffMnJ6fFBfwbQRvId3e_Fp41_85FMH9c1nsVKuwDn243B6hZ870CV7ezUP0-f18NTsrl58-LGYny9IyylUpDbegLFe2FkayWjaEClthLIwDR0ktWtvapjaNdbx1vKqtq6hplDACiKHsEB3vvesYcoy00UOXLPS98RDGpIlSuJKcM5nRN_-hV2GMPqfTuz9WjEjOMjXdUzaGlCI4vY7dYOJWE6x3rehdK_qhlfzg9Z12bAZoH_D7GjKg9sB118P2EZ2enc0__pX_BquvndI</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017931853</pqid></control><display><type>article</type><title>Low‐Energy Electron‐Induced Strand Breaks in Telomere‐Derived DNA Sequences—Influence of DNA Sequence and Topology</title><source>Access via Wiley Online Library</source><creator>Rackwitz, Jenny ; Bald, Ilko</creator><creatorcontrib>Rackwitz, Jenny ; Bald, Ilko</creatorcontrib><description>During cancer radiation therapy high‐energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low‐energy (&lt;20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low‐energy electron‐induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G‐rich sequences. Here, we use DNA origami platforms to expose G‐rich telomere sequences to low‐energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5′‐(TTA GGG)2 is more sensitive to low‐energy electrons than an intermixed sequence 5′‐(TGT GTG A)2 confirming the unique electronic properties resulting from G‐stacking. With increasing length of the oligonucleotide (i.e., going from 5′‐(GGG ATT)2 to 5′‐(GGG ATT)4), both the variety of topology and the electron‐induced strand break cross sections increase. Addition of K+ ions decreases the strand break cross section for all sequences that are able to fold G‐quadruplexes or G‐intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low‐energy electron‐induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. Folding for a cause: Telomeric DNA is guanine‐rich and particularly sensitive to low‐energy electrons. By using DNA origami templates, electron (8.8 eV) induced strand breaks are systematically quantified for different sequences, telomere lengths and folding states (G‐quadruplex vs. open form). Accordingly, the strand breakage is more effective in sequences with A adjacent to G, in longer sequences and in a non‐folded state. The present results could be exploited in cancer radiation therapy.</description><identifier>ISSN: 0947-6539</identifier><identifier>EISSN: 1521-3765</identifier><identifier>DOI: 10.1002/chem.201705889</identifier><identifier>PMID: 29359819</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Breakage ; Cancer ; Chemistry ; Cross-sections ; Deoxyribonucleic acid ; DNA ; DNA damage ; DNA strand breaks ; Electron attachment ; Electrons ; Energy ; Gene sequencing ; Intermediates ; Irradiation ; low-energy electron ; Nucleotide sequence ; Radiation ; Radiation therapy ; telomeric DNA ; Topology ; Tumors</subject><ispartof>Chemistry : a European journal, 2018-03, Vol.24 (18), p.4680-4688</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3259-8a5ce9c59c67a8368b127c4007afef2167dcdcb6abcf5df546cf42ab97a7e1a23</citedby><cites>FETCH-LOGICAL-c3259-8a5ce9c59c67a8368b127c4007afef2167dcdcb6abcf5df546cf42ab97a7e1a23</cites><orcidid>0000-0002-6683-5065</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fchem.201705889$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fchem.201705889$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29359819$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rackwitz, Jenny</creatorcontrib><creatorcontrib>Bald, Ilko</creatorcontrib><title>Low‐Energy Electron‐Induced Strand Breaks in Telomere‐Derived DNA Sequences—Influence of DNA Sequence and Topology</title><title>Chemistry : a European journal</title><addtitle>Chemistry</addtitle><description>During cancer radiation therapy high‐energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low‐energy (&lt;20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low‐energy electron‐induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G‐rich sequences. Here, we use DNA origami platforms to expose G‐rich telomere sequences to low‐energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5′‐(TTA GGG)2 is more sensitive to low‐energy electrons than an intermixed sequence 5′‐(TGT GTG A)2 confirming the unique electronic properties resulting from G‐stacking. With increasing length of the oligonucleotide (i.e., going from 5′‐(GGG ATT)2 to 5′‐(GGG ATT)4), both the variety of topology and the electron‐induced strand break cross sections increase. Addition of K+ ions decreases the strand break cross section for all sequences that are able to fold G‐quadruplexes or G‐intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low‐energy electron‐induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. Folding for a cause: Telomeric DNA is guanine‐rich and particularly sensitive to low‐energy electrons. By using DNA origami templates, electron (8.8 eV) induced strand breaks are systematically quantified for different sequences, telomere lengths and folding states (G‐quadruplex vs. open form). Accordingly, the strand breakage is more effective in sequences with A adjacent to G, in longer sequences and in a non‐folded state. The present results could be exploited in cancer radiation therapy.</description><subject>Breakage</subject><subject>Cancer</subject><subject>Chemistry</subject><subject>Cross-sections</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA damage</subject><subject>DNA strand breaks</subject><subject>Electron attachment</subject><subject>Electrons</subject><subject>Energy</subject><subject>Gene sequencing</subject><subject>Intermediates</subject><subject>Irradiation</subject><subject>low-energy electron</subject><subject>Nucleotide sequence</subject><subject>Radiation</subject><subject>Radiation therapy</subject><subject>telomeric DNA</subject><subject>Topology</subject><subject>Tumors</subject><issn>0947-6539</issn><issn>1521-3765</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc1uEzEURi0EoqFlyxKNxKabCf4Zj-1lSQONFMqiYW15PNdlyowd7AxVWPURWPCEfRIc0hbBpqsrXx8fffKH0CuCpwRj-tZ-gWFKMRGYS6meoAnhlJRM1PwpmmBVibLmTB2gFyldYYxVzdhzdEAV40oSNUE_luH69ubn3EO83BbzHuwmBp83C9-OFtriYhONb4t3EczXVHS-WEEfBoiQmVOI3ffMnJ6fFBfwbQRvId3e_Fp41_85FMH9c1nsVKuwDn243B6hZ870CV7ezUP0-f18NTsrl58-LGYny9IyylUpDbegLFe2FkayWjaEClthLIwDR0ktWtvapjaNdbx1vKqtq6hplDACiKHsEB3vvesYcoy00UOXLPS98RDGpIlSuJKcM5nRN_-hV2GMPqfTuz9WjEjOMjXdUzaGlCI4vY7dYOJWE6x3rehdK_qhlfzg9Z12bAZoH_D7GjKg9sB118P2EZ2enc0__pX_BquvndI</recordid><startdate>20180326</startdate><enddate>20180326</enddate><creator>Rackwitz, Jenny</creator><creator>Bald, Ilko</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6683-5065</orcidid></search><sort><creationdate>20180326</creationdate><title>Low‐Energy Electron‐Induced Strand Breaks in Telomere‐Derived DNA Sequences—Influence of DNA Sequence and Topology</title><author>Rackwitz, Jenny ; Bald, Ilko</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3259-8a5ce9c59c67a8368b127c4007afef2167dcdcb6abcf5df546cf42ab97a7e1a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Breakage</topic><topic>Cancer</topic><topic>Chemistry</topic><topic>Cross-sections</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA damage</topic><topic>DNA strand breaks</topic><topic>Electron attachment</topic><topic>Electrons</topic><topic>Energy</topic><topic>Gene sequencing</topic><topic>Intermediates</topic><topic>Irradiation</topic><topic>low-energy electron</topic><topic>Nucleotide sequence</topic><topic>Radiation</topic><topic>Radiation therapy</topic><topic>telomeric DNA</topic><topic>Topology</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rackwitz, Jenny</creatorcontrib><creatorcontrib>Bald, Ilko</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Chemistry : a European journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rackwitz, Jenny</au><au>Bald, Ilko</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Low‐Energy Electron‐Induced Strand Breaks in Telomere‐Derived DNA Sequences—Influence of DNA Sequence and Topology</atitle><jtitle>Chemistry : a European journal</jtitle><addtitle>Chemistry</addtitle><date>2018-03-26</date><risdate>2018</risdate><volume>24</volume><issue>18</issue><spage>4680</spage><epage>4688</epage><pages>4680-4688</pages><issn>0947-6539</issn><eissn>1521-3765</eissn><abstract>During cancer radiation therapy high‐energy radiation is used to reduce tumour tissue. The irradiation produces a shower of secondary low‐energy (&lt;20 eV) electrons, which are able to damage DNA very efficiently by dissociative electron attachment. Recently, it was suggested that low‐energy electron‐induced DNA strand breaks strongly depend on the specific DNA sequence with a high sensitivity of G‐rich sequences. Here, we use DNA origami platforms to expose G‐rich telomere sequences to low‐energy (8.8 eV) electrons to determine absolute cross sections for strand breakage and to study the influence of sequence modifications and topology of telomeric DNA on the strand breakage. We find that the telomeric DNA 5′‐(TTA GGG)2 is more sensitive to low‐energy electrons than an intermixed sequence 5′‐(TGT GTG A)2 confirming the unique electronic properties resulting from G‐stacking. With increasing length of the oligonucleotide (i.e., going from 5′‐(GGG ATT)2 to 5′‐(GGG ATT)4), both the variety of topology and the electron‐induced strand break cross sections increase. Addition of K+ ions decreases the strand break cross section for all sequences that are able to fold G‐quadruplexes or G‐intermediates, whereas the strand break cross section for the intermixed sequence remains unchanged. These results indicate that telomeric DNA is rather sensitive towards low‐energy electron‐induced strand breakage suggesting significant telomere shortening that can also occur during cancer radiation therapy. Folding for a cause: Telomeric DNA is guanine‐rich and particularly sensitive to low‐energy electrons. By using DNA origami templates, electron (8.8 eV) induced strand breaks are systematically quantified for different sequences, telomere lengths and folding states (G‐quadruplex vs. open form). Accordingly, the strand breakage is more effective in sequences with A adjacent to G, in longer sequences and in a non‐folded state. The present results could be exploited in cancer radiation therapy.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29359819</pmid><doi>10.1002/chem.201705889</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6683-5065</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0947-6539
ispartof Chemistry : a European journal, 2018-03, Vol.24 (18), p.4680-4688
issn 0947-6539
1521-3765
language eng
recordid cdi_proquest_miscellaneous_1990485538
source Access via Wiley Online Library
subjects Breakage
Cancer
Chemistry
Cross-sections
Deoxyribonucleic acid
DNA
DNA damage
DNA strand breaks
Electron attachment
Electrons
Energy
Gene sequencing
Intermediates
Irradiation
low-energy electron
Nucleotide sequence
Radiation
Radiation therapy
telomeric DNA
Topology
Tumors
title Low‐Energy Electron‐Induced Strand Breaks in Telomere‐Derived DNA Sequences—Influence of DNA Sequence and Topology
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A38%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Low%E2%80%90Energy%20Electron%E2%80%90Induced%20Strand%20Breaks%20in%20Telomere%E2%80%90Derived%20DNA%20Sequences%E2%80%94Influence%20of%20DNA%20Sequence%20and%20Topology&rft.jtitle=Chemistry%20:%20a%20European%20journal&rft.au=Rackwitz,%20Jenny&rft.date=2018-03-26&rft.volume=24&rft.issue=18&rft.spage=4680&rft.epage=4688&rft.pages=4680-4688&rft.issn=0947-6539&rft.eissn=1521-3765&rft_id=info:doi/10.1002/chem.201705889&rft_dat=%3Cproquest_cross%3E1990485538%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017931853&rft_id=info:pmid/29359819&rfr_iscdi=true