Preparation of Dual-Emitting Ln@UiO-66-Hybrid Films via Electrophoretic Deposition for Ratiometric Temperature Sensing
Engineering novel dual-emitting metal–organic frameworks (MOFs) with wide emission ranges for application as ratiometric temperature sensors is still a challenge. In this paper, two novel dual-emitting MOFs with intergrated lanthanide metals and luminescent ligand in a UiO-66-type structure, named L...
Gespeichert in:
Veröffentlicht in: | ACS applied materials & interfaces 2018-02, Vol.10 (6), p.6014-6023 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Engineering novel dual-emitting metal–organic frameworks (MOFs) with wide emission ranges for application as ratiometric temperature sensors is still a challenge. In this paper, two novel dual-emitting MOFs with intergrated lanthanide metals and luminescent ligand in a UiO-66-type structure, named Ln@UiO-66-Hybrid, were prepared via the combination of postsynthetic modification and postsynthetic exchange methods. Subsequently, the as-synthesized MOFs were deposited onto fluorine tin oxide substrates through electrophoretic deposition by taking advantage of the charges from the unmodified carboxylic groups of the MOFs. The as-prepared Tb@UiO-66-Hybrid and Eu@UiO-66-Hybrid films were applied to detect temperature changes. The resulting Tb@UiO-66-Hybrid film exhibited good temperature-sensing properties with a relative sensitivity of up to 2.76% K–1 in the temperature range of 303–353 K. In addition, the Eu@UiO-66-Hybrid film showed excellent temperature-sensing performance based on the energy transfer between the luminescent ligand (H2NDC) and europium ions with a relative sensitivity of up to 4.26% K–1 in the temperature range of 303–403 K. |
---|---|
ISSN: | 1944-8244 1944-8252 |
DOI: | 10.1021/acsami.7b17947 |