Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN)

A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of pr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Microscopy research and technique 2018-04, Vol.81 (4), p.419-427
Hauptverfasser: Iqbal, Sajid, Ghani, M. Usman, Saba, Tanzila, Rehman, Amjad, Saggau, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 427
container_issue 4
container_start_page 419
container_title Microscopy research and technique
container_volume 81
creator Iqbal, Sajid
Ghani, M. Usman
Saba, Tanzila
Rehman, Amjad
Saggau, Peter
description A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. The research presents a deep CNN to segment brain tumor in MRI. Proposed architecture consists of multiple CNN layers connected in sequential order using Convolutional feature maps at peer level. Experiments on BRATS 2015 exhibit promising results.
doi_str_mv 10.1002/jemt.22994
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989913341</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989913341</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3934-26e95d69322acdf6bd82855310d52d4112560175ab086eeab3d56553a4b9f643</originalsourceid><addsrcrecordid>eNp9kE1OwzAQhS0EolDYcAAUiU1BSvHYsRsvoSp_4kdCXSA2lpO4KCWJix1TdccROCMnwaXAggWrGb355o3mIbQHuA8Yk-Oprts-IUIka2gLsBjEQRXry56JWAB-6KBt56YYAzBINlGHCMp42NhCj6dWlU3U-trYyOmnWjetakvTREGtfdWWH2_vbqbz1qoqurm_jLwrm6coN82rqfySDHqjvf0q7dzYZxf1hre3hztoY6Iqp3e_axeNz0bj4UV8fXd-OTy5jnMqaBITrgUruKCEqLyY8KxIScoYBVwwUiQAhHEMA6YynHKtVUYLxsNcJZmY8IR2UW9lO7PmxWvXyrp0ua4q1WjjnQSRCgGUJhDQgz_o1HgbHnCShBODQQqMB-poReXWOGf1RM5sWSu7kIDlMnC5DFx-BR7g_W9Ln9W6-EV_Eg4ArIB5WenFP1byanQzXpl-AsRaiyE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2017778156</pqid></control><display><type>article</type><title>Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN)</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Iqbal, Sajid ; Ghani, M. Usman ; Saba, Tanzila ; Rehman, Amjad ; Saggau, Peter</creator><creatorcontrib>Iqbal, Sajid ; Ghani, M. Usman ; Saba, Tanzila ; Rehman, Amjad ; Saggau, Peter</creatorcontrib><description>A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. The research presents a deep CNN to segment brain tumor in MRI. Proposed architecture consists of multiple CNN layers connected in sequential order using Convolutional feature maps at peer level. Experiments on BRATS 2015 exhibit promising results.</description><identifier>ISSN: 1059-910X</identifier><identifier>EISSN: 1097-0029</identifier><identifier>DOI: 10.1002/jemt.22994</identifier><identifier>PMID: 29356229</identifier><language>eng</language><publisher>United States: Wiley Subscription Services, Inc</publisher><subject>Artificial neural networks ; Brain ; Brain cancer ; Brain tumors ; BRATS datasets ; convolutional neural networks ; deep learning ; Feature maps ; features mining ; Image processing ; Image segmentation ; Machine learning ; Magnetic resonance imaging ; Neural networks ; tumor segmentation ; Tumors</subject><ispartof>Microscopy research and technique, 2018-04, Vol.81 (4), p.419-427</ispartof><rights>2018 Wiley Periodicals, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3934-26e95d69322acdf6bd82855310d52d4112560175ab086eeab3d56553a4b9f643</citedby><cites>FETCH-LOGICAL-c3934-26e95d69322acdf6bd82855310d52d4112560175ab086eeab3d56553a4b9f643</cites><orcidid>0000-0002-3817-2655</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjemt.22994$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjemt.22994$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29356229$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Iqbal, Sajid</creatorcontrib><creatorcontrib>Ghani, M. Usman</creatorcontrib><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Saggau, Peter</creatorcontrib><title>Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN)</title><title>Microscopy research and technique</title><addtitle>Microsc Res Tech</addtitle><description>A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. The research presents a deep CNN to segment brain tumor in MRI. Proposed architecture consists of multiple CNN layers connected in sequential order using Convolutional feature maps at peer level. Experiments on BRATS 2015 exhibit promising results.</description><subject>Artificial neural networks</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain tumors</subject><subject>BRATS datasets</subject><subject>convolutional neural networks</subject><subject>deep learning</subject><subject>Feature maps</subject><subject>features mining</subject><subject>Image processing</subject><subject>Image segmentation</subject><subject>Machine learning</subject><subject>Magnetic resonance imaging</subject><subject>Neural networks</subject><subject>tumor segmentation</subject><subject>Tumors</subject><issn>1059-910X</issn><issn>1097-0029</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1OwzAQhS0EolDYcAAUiU1BSvHYsRsvoSp_4kdCXSA2lpO4KCWJix1TdccROCMnwaXAggWrGb355o3mIbQHuA8Yk-Oprts-IUIka2gLsBjEQRXry56JWAB-6KBt56YYAzBINlGHCMp42NhCj6dWlU3U-trYyOmnWjetakvTREGtfdWWH2_vbqbz1qoqurm_jLwrm6coN82rqfySDHqjvf0q7dzYZxf1hre3hztoY6Iqp3e_axeNz0bj4UV8fXd-OTy5jnMqaBITrgUruKCEqLyY8KxIScoYBVwwUiQAhHEMA6YynHKtVUYLxsNcJZmY8IR2UW9lO7PmxWvXyrp0ua4q1WjjnQSRCgGUJhDQgz_o1HgbHnCShBODQQqMB-poReXWOGf1RM5sWSu7kIDlMnC5DFx-BR7g_W9Ln9W6-EV_Eg4ArIB5WenFP1byanQzXpl-AsRaiyE</recordid><startdate>201804</startdate><enddate>201804</enddate><creator>Iqbal, Sajid</creator><creator>Ghani, M. Usman</creator><creator>Saba, Tanzila</creator><creator>Rehman, Amjad</creator><creator>Saggau, Peter</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QP</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7U7</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid></search><sort><creationdate>201804</creationdate><title>Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN)</title><author>Iqbal, Sajid ; Ghani, M. Usman ; Saba, Tanzila ; Rehman, Amjad ; Saggau, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3934-26e95d69322acdf6bd82855310d52d4112560175ab086eeab3d56553a4b9f643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Artificial neural networks</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain tumors</topic><topic>BRATS datasets</topic><topic>convolutional neural networks</topic><topic>deep learning</topic><topic>Feature maps</topic><topic>features mining</topic><topic>Image processing</topic><topic>Image segmentation</topic><topic>Machine learning</topic><topic>Magnetic resonance imaging</topic><topic>Neural networks</topic><topic>tumor segmentation</topic><topic>Tumors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iqbal, Sajid</creatorcontrib><creatorcontrib>Ghani, M. Usman</creatorcontrib><creatorcontrib>Saba, Tanzila</creatorcontrib><creatorcontrib>Rehman, Amjad</creatorcontrib><creatorcontrib>Saggau, Peter</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Toxicology Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Microscopy research and technique</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iqbal, Sajid</au><au>Ghani, M. Usman</au><au>Saba, Tanzila</au><au>Rehman, Amjad</au><au>Saggau, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN)</atitle><jtitle>Microscopy research and technique</jtitle><addtitle>Microsc Res Tech</addtitle><date>2018-04</date><risdate>2018</risdate><volume>81</volume><issue>4</issue><spage>419</spage><epage>427</epage><pages>419-427</pages><issn>1059-910X</issn><eissn>1097-0029</eissn><abstract>A tumor could be found in any area of the brain and could be of any size, shape, and contrast. There may exist multiple tumors of different types in a human brain at the same time. Accurate tumor area segmentation is considered primary step for treatment of brain tumors. Deep Learning is a set of promising techniques that could provide better results as compared to nondeep learning techniques for segmenting timorous part inside a brain. This article presents a deep convolutional neural network (CNN) to segment brain tumors in MRIs. The proposed network uses BRATS segmentation challenge dataset which is composed of images obtained through four different modalities. Accordingly, we present an extended version of existing network to solve segmentation problem. The network architecture consists of multiple neural network layers connected in sequential order with the feeding of Convolutional feature maps at the peer level. Experimental results on BRATS 2015 benchmark data thus show the usability of the proposed approach and its superiority over the other approaches in this area of research. The research presents a deep CNN to segment brain tumor in MRI. Proposed architecture consists of multiple CNN layers connected in sequential order using Convolutional feature maps at peer level. Experiments on BRATS 2015 exhibit promising results.</abstract><cop>United States</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29356229</pmid><doi>10.1002/jemt.22994</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3817-2655</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1059-910X
ispartof Microscopy research and technique, 2018-04, Vol.81 (4), p.419-427
issn 1059-910X
1097-0029
language eng
recordid cdi_proquest_miscellaneous_1989913341
source Wiley Online Library Journals Frontfile Complete
subjects Artificial neural networks
Brain
Brain cancer
Brain tumors
BRATS datasets
convolutional neural networks
deep learning
Feature maps
features mining
Image processing
Image segmentation
Machine learning
Magnetic resonance imaging
Neural networks
tumor segmentation
Tumors
title Brain tumor segmentation in multi‐spectral MRI using convolutional neural networks (CNN)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T04%3A30%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Brain%20tumor%20segmentation%20in%20multi%E2%80%90spectral%20MRI%20using%20convolutional%20neural%20networks%20(CNN)&rft.jtitle=Microscopy%20research%20and%20technique&rft.au=Iqbal,%20Sajid&rft.date=2018-04&rft.volume=81&rft.issue=4&rft.spage=419&rft.epage=427&rft.pages=419-427&rft.issn=1059-910X&rft.eissn=1097-0029&rft_id=info:doi/10.1002/jemt.22994&rft_dat=%3Cproquest_cross%3E1989913341%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2017778156&rft_id=info:pmid/29356229&rfr_iscdi=true