Biochemistry of complex glycan depolymerisation by the human gut microbiota
The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Pr...
Gespeichert in:
Veröffentlicht in: | FEMS microbiology reviews 2018-03, Vol.42 (2), p.146-164 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 164 |
---|---|
container_issue | 2 |
container_start_page | 146 |
container_title | FEMS microbiology reviews |
container_volume | 42 |
creator | Ndeh, Didier Gilbert, Harry J |
description | The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem. |
doi_str_mv | 10.1093/femsre/fuy002 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989609142</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2400000362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c426t-f4bd950f326b0a963fa57eaece8fe6a3fde5d0cbbe34d3af6d0f2ce8420df7753</originalsourceid><addsrcrecordid>eNpdkE1PwzAMhiMEYmNw5IoiceFS5iZNuhxh4ktM4gLnKk2drVPTjKaV6L-nUwdC-GJL7yPLfgi5jOE2BsXnFl1ocG67HoAdkWks0iSSKpXHf-YJOQthCwBCCXFKJkxxJiBhU_J6X3qzQVeGtumpt9R4t6vwi66r3uiaFrjzVe-wKYNuS1_TvKftBummc0O67lrqStP4vPStPicnVlcBLw59Rj4eH96Xz9Hq7ellebeKTMJkG9kkL5QAy5nMQSvJrRYpajS4sCg1twWKAkyeI08Krq0swLIhTBgUNk0Fn5Gbce-u8Z8dhjYbzjdYVbpG34UsVgslQcUJG9Drf-jWd009XJexBPbF5Z6KRmr4JAw2bbZrSqebPosh21vORsvZaHngrw5bu9xh8Uv_aOXfAgZ8BQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2400000362</pqid></control><display><type>article</type><title>Biochemistry of complex glycan depolymerisation by the human gut microbiota</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford Journals Open Access Collection</source><source>PubMed Central</source><creator>Ndeh, Didier ; Gilbert, Harry J</creator><creatorcontrib>Ndeh, Didier ; Gilbert, Harry J</creatorcontrib><description>The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.</description><identifier>ISSN: 1574-6976</identifier><identifier>ISSN: 0168-6445</identifier><identifier>EISSN: 1574-6976</identifier><identifier>DOI: 10.1093/femsre/fuy002</identifier><identifier>PMID: 29325042</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Bacteria - enzymology ; Bacteria - metabolism ; Carbohydrates ; Depolymerization ; Diet ; Digestive system ; Gastrointestinal Microbiome - physiology ; Gastrointestinal tract ; Glycan ; Humans ; Intestinal microflora ; Microbiota ; Microorganisms ; Nutrient availability ; Nutrient dynamics ; Nutrient sources ; Nutrients ; Polysaccharides ; Polysaccharides - metabolism</subject><ispartof>FEMS microbiology reviews, 2018-03, Vol.42 (2), p.146-164</ispartof><rights>FEMS 2018. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c426t-f4bd950f326b0a963fa57eaece8fe6a3fde5d0cbbe34d3af6d0f2ce8420df7753</citedby><cites>FETCH-LOGICAL-c426t-f4bd950f326b0a963fa57eaece8fe6a3fde5d0cbbe34d3af6d0f2ce8420df7753</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29325042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ndeh, Didier</creatorcontrib><creatorcontrib>Gilbert, Harry J</creatorcontrib><title>Biochemistry of complex glycan depolymerisation by the human gut microbiota</title><title>FEMS microbiology reviews</title><addtitle>FEMS Microbiol Rev</addtitle><description>The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.</description><subject>Bacteria - enzymology</subject><subject>Bacteria - metabolism</subject><subject>Carbohydrates</subject><subject>Depolymerization</subject><subject>Diet</subject><subject>Digestive system</subject><subject>Gastrointestinal Microbiome - physiology</subject><subject>Gastrointestinal tract</subject><subject>Glycan</subject><subject>Humans</subject><subject>Intestinal microflora</subject><subject>Microbiota</subject><subject>Microorganisms</subject><subject>Nutrient availability</subject><subject>Nutrient dynamics</subject><subject>Nutrient sources</subject><subject>Nutrients</subject><subject>Polysaccharides</subject><subject>Polysaccharides - metabolism</subject><issn>1574-6976</issn><issn>0168-6445</issn><issn>1574-6976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNpdkE1PwzAMhiMEYmNw5IoiceFS5iZNuhxh4ktM4gLnKk2drVPTjKaV6L-nUwdC-GJL7yPLfgi5jOE2BsXnFl1ocG67HoAdkWks0iSSKpXHf-YJOQthCwBCCXFKJkxxJiBhU_J6X3qzQVeGtumpt9R4t6vwi66r3uiaFrjzVe-wKYNuS1_TvKftBummc0O67lrqStP4vPStPicnVlcBLw59Rj4eH96Xz9Hq7ellebeKTMJkG9kkL5QAy5nMQSvJrRYpajS4sCg1twWKAkyeI08Krq0swLIhTBgUNk0Fn5Gbce-u8Z8dhjYbzjdYVbpG34UsVgslQcUJG9Drf-jWd009XJexBPbF5Z6KRmr4JAw2bbZrSqebPosh21vORsvZaHngrw5bu9xh8Uv_aOXfAgZ8BQ</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ndeh, Didier</creator><creator>Gilbert, Harry J</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7T7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180301</creationdate><title>Biochemistry of complex glycan depolymerisation by the human gut microbiota</title><author>Ndeh, Didier ; Gilbert, Harry J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c426t-f4bd950f326b0a963fa57eaece8fe6a3fde5d0cbbe34d3af6d0f2ce8420df7753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bacteria - enzymology</topic><topic>Bacteria - metabolism</topic><topic>Carbohydrates</topic><topic>Depolymerization</topic><topic>Diet</topic><topic>Digestive system</topic><topic>Gastrointestinal Microbiome - physiology</topic><topic>Gastrointestinal tract</topic><topic>Glycan</topic><topic>Humans</topic><topic>Intestinal microflora</topic><topic>Microbiota</topic><topic>Microorganisms</topic><topic>Nutrient availability</topic><topic>Nutrient dynamics</topic><topic>Nutrient sources</topic><topic>Nutrients</topic><topic>Polysaccharides</topic><topic>Polysaccharides - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ndeh, Didier</creatorcontrib><creatorcontrib>Gilbert, Harry J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>FEMS microbiology reviews</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ndeh, Didier</au><au>Gilbert, Harry J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemistry of complex glycan depolymerisation by the human gut microbiota</atitle><jtitle>FEMS microbiology reviews</jtitle><addtitle>FEMS Microbiol Rev</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>42</volume><issue>2</issue><spage>146</spage><epage>164</epage><pages>146-164</pages><issn>1574-6976</issn><issn>0168-6445</issn><eissn>1574-6976</eissn><abstract>The human gut microbiota (HGM) makes an important contribution to health and disease. It is a complex microbial community of trillions of microbes with a majority of its members represented within two phyla, the Bacteroidetes and Firmicutes, although it also contains species of Actinobacteria and Proteobacteria. Reflecting its importance, the HGM is sometimes referred to as an 'organ' as it performs functions analogous to systemic tissues within the human host. The major nutrients available to the HGM are host and dietary complex carbohydrates. To utilise these nutrient sources, the HGM has developed elaborate, variable and sophisticated systems for the sensing, capture and utilisation of these glycans. Understanding nutrient acquisition by the HGM can thus provide mechanistic insights into the dynamics of this ecosystem, and how it impacts human health. Dietary nutrient sources include a wide variety of simple and complex plant and animal-derived glycans most of which are not degraded by enzymes in the digestive tract of the host. Here we review how various adaptive mechanisms that operate across the major phyla of the HGM contribute to glycan utilisation, focusing on the most complex carbohydrates presented to this ecosystem.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>29325042</pmid><doi>10.1093/femsre/fuy002</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1574-6976 |
ispartof | FEMS microbiology reviews, 2018-03, Vol.42 (2), p.146-164 |
issn | 1574-6976 0168-6445 1574-6976 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989609142 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford Journals Open Access Collection; PubMed Central |
subjects | Bacteria - enzymology Bacteria - metabolism Carbohydrates Depolymerization Diet Digestive system Gastrointestinal Microbiome - physiology Gastrointestinal tract Glycan Humans Intestinal microflora Microbiota Microorganisms Nutrient availability Nutrient dynamics Nutrient sources Nutrients Polysaccharides Polysaccharides - metabolism |
title | Biochemistry of complex glycan depolymerisation by the human gut microbiota |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T10%3A52%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemistry%20of%20complex%20glycan%20depolymerisation%20by%20the%20human%20gut%20microbiota&rft.jtitle=FEMS%20microbiology%20reviews&rft.au=Ndeh,%20Didier&rft.date=2018-03-01&rft.volume=42&rft.issue=2&rft.spage=146&rft.epage=164&rft.pages=146-164&rft.issn=1574-6976&rft.eissn=1574-6976&rft_id=info:doi/10.1093/femsre/fuy002&rft_dat=%3Cproquest_cross%3E2400000362%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2400000362&rft_id=info:pmid/29325042&rfr_iscdi=true |