Predicting tensorial electrophoretic effects in asymmetric colloids

We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. T...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review. E 2017-12, Vol.96 (6-1), p.062613-062613, Article 062613
Hauptverfasser: Mowitz, Aaron J, Witten, T A
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 062613
container_issue 6-1
container_start_page 062613
container_title Physical review. E
container_volume 96
creator Mowitz, Aaron J
Witten, T A
description We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970)JCISA50021-979710.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).
doi_str_mv 10.1103/PhysRevE.96.062613
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989606406</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989606406</sourcerecordid><originalsourceid>FETCH-LOGICAL-c303t-ec71b8ed21dfab1d3f6ea7cfeb029eca54ca982031776f6b9e000841004e2f723</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMottT-AQ-yRy9bJ8k22Ryl1A8oWETPIZud2MjupiZbof_elX6cZhje952Zh5BbCjNKgT-sN_v0jr_LmRIzEExQfkHGrJCQA8z55bkv5iMyTekbAKgAJSm7JiOmeCE58DFZrCPW3va--8p67FKI3jQZNmj7GLabELH3NkPnhkHKfJeZtG9b7OMwtaFpgq_TDblypkk4PdYJ-Xxafixe8tXb8-vicZXbYVWfo5W0KrFmtHamojV3Ao20DitgCq2ZF9aokgGnUgonKoXDzWVBhx-QOcn4hNwfcrcx_Oww9br1yWLTmA7DLmmqSiVAFCAGKTtIbQwpRXR6G31r4l5T0P_89ImfVkIf-A2mu2P-rmqxPltOtPgfuvxuIA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989606406</pqid></control><display><type>article</type><title>Predicting tensorial electrophoretic effects in asymmetric colloids</title><source>American Physical Society Journals</source><creator>Mowitz, Aaron J ; Witten, T A</creator><creatorcontrib>Mowitz, Aaron J ; Witten, T A</creatorcontrib><description>We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970)JCISA50021-979710.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).</description><identifier>ISSN: 2470-0045</identifier><identifier>EISSN: 2470-0053</identifier><identifier>DOI: 10.1103/PhysRevE.96.062613</identifier><identifier>PMID: 29347303</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review. E, 2017-12, Vol.96 (6-1), p.062613-062613, Article 062613</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c303t-ec71b8ed21dfab1d3f6ea7cfeb029eca54ca982031776f6b9e000841004e2f723</citedby><cites>FETCH-LOGICAL-c303t-ec71b8ed21dfab1d3f6ea7cfeb029eca54ca982031776f6b9e000841004e2f723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,2863,2864,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29347303$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mowitz, Aaron J</creatorcontrib><creatorcontrib>Witten, T A</creatorcontrib><title>Predicting tensorial electrophoretic effects in asymmetric colloids</title><title>Physical review. E</title><addtitle>Phys Rev E</addtitle><description>We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970)JCISA50021-979710.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).</description><issn>2470-0045</issn><issn>2470-0053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMottT-AQ-yRy9bJ8k22Ryl1A8oWETPIZud2MjupiZbof_elX6cZhje952Zh5BbCjNKgT-sN_v0jr_LmRIzEExQfkHGrJCQA8z55bkv5iMyTekbAKgAJSm7JiOmeCE58DFZrCPW3va--8p67FKI3jQZNmj7GLabELH3NkPnhkHKfJeZtG9b7OMwtaFpgq_TDblypkk4PdYJ-Xxafixe8tXb8-vicZXbYVWfo5W0KrFmtHamojV3Ao20DitgCq2ZF9aokgGnUgonKoXDzWVBhx-QOcn4hNwfcrcx_Oww9br1yWLTmA7DLmmqSiVAFCAGKTtIbQwpRXR6G31r4l5T0P_89ImfVkIf-A2mu2P-rmqxPltOtPgfuvxuIA</recordid><startdate>201712</startdate><enddate>201712</enddate><creator>Mowitz, Aaron J</creator><creator>Witten, T A</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>201712</creationdate><title>Predicting tensorial electrophoretic effects in asymmetric colloids</title><author>Mowitz, Aaron J ; Witten, T A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c303t-ec71b8ed21dfab1d3f6ea7cfeb029eca54ca982031776f6b9e000841004e2f723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mowitz, Aaron J</creatorcontrib><creatorcontrib>Witten, T A</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review. E</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mowitz, Aaron J</au><au>Witten, T A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting tensorial electrophoretic effects in asymmetric colloids</atitle><jtitle>Physical review. E</jtitle><addtitle>Phys Rev E</addtitle><date>2017-12</date><risdate>2017</risdate><volume>96</volume><issue>6-1</issue><spage>062613</spage><epage>062613</epage><pages>062613-062613</pages><artnum>062613</artnum><issn>2470-0045</issn><eissn>2470-0053</eissn><abstract>We formulate a numerical method for predicting the tensorial linear response of a rigid, asymmetrically charged body to an applied electric field. This prediction requires calculating the response of the fluid to the Stokes drag forces on the moving body and on the countercharges near its surface. To determine the fluid's motion, we represent both the body and the countercharges using many point sources of drag known as Stokeslets. Finding the correct flow field amounts to finding the set of drag forces on the Stokeslets that is consistent with the relative velocities experienced by each Stokeslet. The method rigorously satisfies the condition that the object moves with no transfer of momentum to the fluid. We demonstrate that a sphere represented by 1999 well-separated Stokeslets on its surface produces flow and drag force like a solid sphere to 1% accuracy. We show that a uniformly charged sphere with 3998 body and countercharge Stokeslets obeys the Smoluchowski prediction [F. Morrison, J. Colloid Interface Sci. 34, 210 (1970)JCISA50021-979710.1016/0021-9797(70)90171-2] for electrophoretic mobility when the countercharges lie close to the sphere. Spheres with dipolar and quadrupolar charge distributions rotate and translate as predicted analytically to 4% accuracy or better. We describe how the method can treat general asymmetric shapes and charge distributions. This method offers promise as a way to characterize and manipulate asymmetrically charged colloid-scale objects from biology (e.g., viruses) and technology (e.g., self-assembled clusters).</abstract><cop>United States</cop><pmid>29347303</pmid><doi>10.1103/PhysRevE.96.062613</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2470-0045
ispartof Physical review. E, 2017-12, Vol.96 (6-1), p.062613-062613, Article 062613
issn 2470-0045
2470-0053
language eng
recordid cdi_proquest_miscellaneous_1989606406
source American Physical Society Journals
title Predicting tensorial electrophoretic effects in asymmetric colloids
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T14%3A41%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20tensorial%20electrophoretic%20effects%20in%20asymmetric%20colloids&rft.jtitle=Physical%20review.%20E&rft.au=Mowitz,%20Aaron%20J&rft.date=2017-12&rft.volume=96&rft.issue=6-1&rft.spage=062613&rft.epage=062613&rft.pages=062613-062613&rft.artnum=062613&rft.issn=2470-0045&rft.eissn=2470-0053&rft_id=info:doi/10.1103/PhysRevE.96.062613&rft_dat=%3Cproquest_cross%3E1989606406%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989606406&rft_id=info:pmid/29347303&rfr_iscdi=true