Development of Self-Healing d‑Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials

Formation of supramolecular ionic liquid (IL) gels (ionogels) induced by low-molecular-mass gelators (LMMGs) is an efficient strategy to confine ILs, and the negligible influence of LMMGs on the electrochemical properties of ILs makes ionogels ideal quasisolid electrochemical materials. Furthermore,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-02, Vol.10 (6), p.5871-5879
Hauptverfasser: Chen, Shipeng, Zhang, Baohao, Zhang, Nanxiang, Ge, Fengsheng, Zhang, Bao, Wang, Xiaoji, Song, Jian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5879
container_issue 6
container_start_page 5871
container_title ACS applied materials & interfaces
container_volume 10
creator Chen, Shipeng
Zhang, Baohao
Zhang, Nanxiang
Ge, Fengsheng
Zhang, Bao
Wang, Xiaoji
Song, Jian
description Formation of supramolecular ionic liquid (IL) gels (ionogels) induced by low-molecular-mass gelators (LMMGs) is an efficient strategy to confine ILs, and the negligible influence of LMMGs on the electrochemical properties of ILs makes ionogels ideal quasisolid electrochemical materials. Furthermore, the stimuli-responsive and self-healing characters of the supramolecular gel can be utilized for the potential development of smart electrochemical materials. However, the poor mechanical properties of supramolecular ionogels reported so far limit their practical applications. Herein, we investigated a series of efficient d-gluconic acetal-based gelators (Gn, PG16, and B8) that can harden a wide variety of ILs at low concentrations. It was shown that both alkyl chain length and the number of hydrogen bonding sites of a certain gelator, as well as the nature of the IL anion, significantly influenced the gelation abilities. The resulting ionogels were thermally reversible, and most of them were stable at room temperature. Interestingly, a PG16-based supramolecular ionogel showed rapid self-healing properties upon mechanical damage. Furthermore, the PG16-based ionogel demonstrated unprecedented performances including the favorable ionic conductivity, excellent mechanical strength, and enhanced viscoelasticity, which make it a great self-healing electrochemical material. The ionogel formation mechanism was proposed based on the analysis of Fourier transform infrared, 1HNMR, and X-ray diffraction, indicating that a combination of hydrogen bonding, π–π stacking, and interactions between alkyl chains was responsible for the self-assembly of gelators in ILs. Overall, our present studies on exploring the structure–property relationship of gelators for the formation of practically useful supramolecular ionogels shed light for future development of more functionalized ionogels.
doi_str_mv 10.1021/acsami.7b17099
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989604588</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989604588</sourcerecordid><originalsourceid>FETCH-LOGICAL-a396t-b1b2cb69a0d2b579ef543ee1b4b5861b095b689235ce0052766e2ad24ca569fc3</originalsourceid><addsrcrecordid>eNp1kUFP3DAUhC1UBJRy7bHysaqUxXZib3yklC4rgaBaOEfPzgs1cuKtnSBx4w9w4C_yS-pqF249zTt8M9K8IeQzZzPOBD8Gm6B3s7nhc6b1DjnguqqKWkjx4f2uqn3yMaV7xlQpmNwj-0KXkkleH5DnH_iAPqx7HEYaOrpC3xXnCN4Nd7R9fXpZ-MmGwVl6YnEEX3yHhC1dTesIffBoJw-RLsMQ7tAn2oVIr8OYwxx4epuQQqKrHuJIf02QXAretfQs-8YY7G_snc3cJYwYsyF9IrtdFjza6iG5_Xl2c3peXFwtlqcnFwWUWo2F4UZYozSwVhg519jJqkTkpjKyVtwwLY2qtSilRcakmCuFAlpRWZBKd7Y8JF83uesY_kyYxqZ3yaL3MGCYUsN1rRWrZF1ndLZBbQwpReyadXS50GPDWfNvgmYzQbOdIBu-bLMn02P7jr_9PAPfNkA2NvdhikOu-r-0v4l9lFQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989604588</pqid></control><display><type>article</type><title>Development of Self-Healing d‑Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials</title><source>ACS Publications</source><source>MEDLINE</source><creator>Chen, Shipeng ; Zhang, Baohao ; Zhang, Nanxiang ; Ge, Fengsheng ; Zhang, Bao ; Wang, Xiaoji ; Song, Jian</creator><creatorcontrib>Chen, Shipeng ; Zhang, Baohao ; Zhang, Nanxiang ; Ge, Fengsheng ; Zhang, Bao ; Wang, Xiaoji ; Song, Jian</creatorcontrib><description>Formation of supramolecular ionic liquid (IL) gels (ionogels) induced by low-molecular-mass gelators (LMMGs) is an efficient strategy to confine ILs, and the negligible influence of LMMGs on the electrochemical properties of ILs makes ionogels ideal quasisolid electrochemical materials. Furthermore, the stimuli-responsive and self-healing characters of the supramolecular gel can be utilized for the potential development of smart electrochemical materials. However, the poor mechanical properties of supramolecular ionogels reported so far limit their practical applications. Herein, we investigated a series of efficient d-gluconic acetal-based gelators (Gn, PG16, and B8) that can harden a wide variety of ILs at low concentrations. It was shown that both alkyl chain length and the number of hydrogen bonding sites of a certain gelator, as well as the nature of the IL anion, significantly influenced the gelation abilities. The resulting ionogels were thermally reversible, and most of them were stable at room temperature. Interestingly, a PG16-based supramolecular ionogel showed rapid self-healing properties upon mechanical damage. Furthermore, the PG16-based ionogel demonstrated unprecedented performances including the favorable ionic conductivity, excellent mechanical strength, and enhanced viscoelasticity, which make it a great self-healing electrochemical material. The ionogel formation mechanism was proposed based on the analysis of Fourier transform infrared, 1HNMR, and X-ray diffraction, indicating that a combination of hydrogen bonding, π–π stacking, and interactions between alkyl chains was responsible for the self-assembly of gelators in ILs. Overall, our present studies on exploring the structure–property relationship of gelators for the formation of practically useful supramolecular ionogels shed light for future development of more functionalized ionogels.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b17099</identifier><identifier>PMID: 29350518</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Acetals - chemistry ; Gels ; Hydrogen Bonding ; X-Ray Diffraction</subject><ispartof>ACS applied materials &amp; interfaces, 2018-02, Vol.10 (6), p.5871-5879</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a396t-b1b2cb69a0d2b579ef543ee1b4b5861b095b689235ce0052766e2ad24ca569fc3</citedby><cites>FETCH-LOGICAL-a396t-b1b2cb69a0d2b579ef543ee1b4b5861b095b689235ce0052766e2ad24ca569fc3</cites><orcidid>0000-0003-4846-0594</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b17099$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b17099$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29350518$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Chen, Shipeng</creatorcontrib><creatorcontrib>Zhang, Baohao</creatorcontrib><creatorcontrib>Zhang, Nanxiang</creatorcontrib><creatorcontrib>Ge, Fengsheng</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Xiaoji</creatorcontrib><creatorcontrib>Song, Jian</creatorcontrib><title>Development of Self-Healing d‑Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Formation of supramolecular ionic liquid (IL) gels (ionogels) induced by low-molecular-mass gelators (LMMGs) is an efficient strategy to confine ILs, and the negligible influence of LMMGs on the electrochemical properties of ILs makes ionogels ideal quasisolid electrochemical materials. Furthermore, the stimuli-responsive and self-healing characters of the supramolecular gel can be utilized for the potential development of smart electrochemical materials. However, the poor mechanical properties of supramolecular ionogels reported so far limit their practical applications. Herein, we investigated a series of efficient d-gluconic acetal-based gelators (Gn, PG16, and B8) that can harden a wide variety of ILs at low concentrations. It was shown that both alkyl chain length and the number of hydrogen bonding sites of a certain gelator, as well as the nature of the IL anion, significantly influenced the gelation abilities. The resulting ionogels were thermally reversible, and most of them were stable at room temperature. Interestingly, a PG16-based supramolecular ionogel showed rapid self-healing properties upon mechanical damage. Furthermore, the PG16-based ionogel demonstrated unprecedented performances including the favorable ionic conductivity, excellent mechanical strength, and enhanced viscoelasticity, which make it a great self-healing electrochemical material. The ionogel formation mechanism was proposed based on the analysis of Fourier transform infrared, 1HNMR, and X-ray diffraction, indicating that a combination of hydrogen bonding, π–π stacking, and interactions between alkyl chains was responsible for the self-assembly of gelators in ILs. Overall, our present studies on exploring the structure–property relationship of gelators for the formation of practically useful supramolecular ionogels shed light for future development of more functionalized ionogels.</description><subject>Acetals - chemistry</subject><subject>Gels</subject><subject>Hydrogen Bonding</subject><subject>X-Ray Diffraction</subject><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUFP3DAUhC1UBJRy7bHysaqUxXZib3yklC4rgaBaOEfPzgs1cuKtnSBx4w9w4C_yS-pqF249zTt8M9K8IeQzZzPOBD8Gm6B3s7nhc6b1DjnguqqKWkjx4f2uqn3yMaV7xlQpmNwj-0KXkkleH5DnH_iAPqx7HEYaOrpC3xXnCN4Nd7R9fXpZ-MmGwVl6YnEEX3yHhC1dTesIffBoJw-RLsMQ7tAn2oVIr8OYwxx4epuQQqKrHuJIf02QXAretfQs-8YY7G_snc3cJYwYsyF9IrtdFjza6iG5_Xl2c3peXFwtlqcnFwWUWo2F4UZYozSwVhg519jJqkTkpjKyVtwwLY2qtSilRcakmCuFAlpRWZBKd7Y8JF83uesY_kyYxqZ3yaL3MGCYUsN1rRWrZF1ndLZBbQwpReyadXS50GPDWfNvgmYzQbOdIBu-bLMn02P7jr_9PAPfNkA2NvdhikOu-r-0v4l9lFQ</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Chen, Shipeng</creator><creator>Zhang, Baohao</creator><creator>Zhang, Nanxiang</creator><creator>Ge, Fengsheng</creator><creator>Zhang, Bao</creator><creator>Wang, Xiaoji</creator><creator>Song, Jian</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4846-0594</orcidid></search><sort><creationdate>20180214</creationdate><title>Development of Self-Healing d‑Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials</title><author>Chen, Shipeng ; Zhang, Baohao ; Zhang, Nanxiang ; Ge, Fengsheng ; Zhang, Bao ; Wang, Xiaoji ; Song, Jian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a396t-b1b2cb69a0d2b579ef543ee1b4b5861b095b689235ce0052766e2ad24ca569fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acetals - chemistry</topic><topic>Gels</topic><topic>Hydrogen Bonding</topic><topic>X-Ray Diffraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Chen, Shipeng</creatorcontrib><creatorcontrib>Zhang, Baohao</creatorcontrib><creatorcontrib>Zhang, Nanxiang</creatorcontrib><creatorcontrib>Ge, Fengsheng</creatorcontrib><creatorcontrib>Zhang, Bao</creatorcontrib><creatorcontrib>Wang, Xiaoji</creatorcontrib><creatorcontrib>Song, Jian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Chen, Shipeng</au><au>Zhang, Baohao</au><au>Zhang, Nanxiang</au><au>Ge, Fengsheng</au><au>Zhang, Bao</au><au>Wang, Xiaoji</au><au>Song, Jian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Development of Self-Healing d‑Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-02-14</date><risdate>2018</risdate><volume>10</volume><issue>6</issue><spage>5871</spage><epage>5879</epage><pages>5871-5879</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Formation of supramolecular ionic liquid (IL) gels (ionogels) induced by low-molecular-mass gelators (LMMGs) is an efficient strategy to confine ILs, and the negligible influence of LMMGs on the electrochemical properties of ILs makes ionogels ideal quasisolid electrochemical materials. Furthermore, the stimuli-responsive and self-healing characters of the supramolecular gel can be utilized for the potential development of smart electrochemical materials. However, the poor mechanical properties of supramolecular ionogels reported so far limit their practical applications. Herein, we investigated a series of efficient d-gluconic acetal-based gelators (Gn, PG16, and B8) that can harden a wide variety of ILs at low concentrations. It was shown that both alkyl chain length and the number of hydrogen bonding sites of a certain gelator, as well as the nature of the IL anion, significantly influenced the gelation abilities. The resulting ionogels were thermally reversible, and most of them were stable at room temperature. Interestingly, a PG16-based supramolecular ionogel showed rapid self-healing properties upon mechanical damage. Furthermore, the PG16-based ionogel demonstrated unprecedented performances including the favorable ionic conductivity, excellent mechanical strength, and enhanced viscoelasticity, which make it a great self-healing electrochemical material. The ionogel formation mechanism was proposed based on the analysis of Fourier transform infrared, 1HNMR, and X-ray diffraction, indicating that a combination of hydrogen bonding, π–π stacking, and interactions between alkyl chains was responsible for the self-assembly of gelators in ILs. Overall, our present studies on exploring the structure–property relationship of gelators for the formation of practically useful supramolecular ionogels shed light for future development of more functionalized ionogels.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29350518</pmid><doi>10.1021/acsami.7b17099</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0003-4846-0594</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-02, Vol.10 (6), p.5871-5879
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1989604588
source ACS Publications; MEDLINE
subjects Acetals - chemistry
Gels
Hydrogen Bonding
X-Ray Diffraction
title Development of Self-Healing d‑Gluconic Acetal-Based Supramolecular Ionogels for Potential Use as Smart Quasisolid Electrochemical Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T02%3A35%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Development%20of%20Self-Healing%20d%E2%80%91Gluconic%20Acetal-Based%20Supramolecular%20Ionogels%20for%20Potential%20Use%20as%20Smart%20Quasisolid%20Electrochemical%20Materials&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Chen,%20Shipeng&rft.date=2018-02-14&rft.volume=10&rft.issue=6&rft.spage=5871&rft.epage=5879&rft.pages=5871-5879&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b17099&rft_dat=%3Cproquest_cross%3E1989604588%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989604588&rft_id=info:pmid/29350518&rfr_iscdi=true