Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy

The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Behavioral and brain sciences 2017, Vol.40, p.e119-e119, Article e119
Hauptverfasser: Hill, Sarah E., Proffitt Leyva, Randi P., DelPriore, Danielle J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e119
container_issue
container_start_page e119
container_title The Behavioral and brain sciences
container_volume 40
creator Hill, Sarah E.
Proffitt Leyva, Randi P.
DelPriore, Danielle J.
description The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts.
doi_str_mv 10.1017/S0140525X16001448
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989599429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0140525X16001448</cupid><sourcerecordid>1989599429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</originalsourceid><addsrcrecordid>eNp1kUFq3DAUhkVJSabTHKCbIMimG7eSZclWd8mQtIVAA2mhOyPJTxkF25pKMmV2uUMukLPkKD1JZTINpSUrSbzvfU_8D6E3lLyjhNbvrwitCC_5dypIvlbNC7SglZAFbUq-hxZzuZjrB-hVjDeEEF5xuY8OSsmqktdygfrLAJ0zyY3XeD0NasSqcxsfXdo-3P-6vXu4j36A5AaIu_dPl9bYet9hN0YwU8joB3wavOpgxGkNePAd9BkJWENKELAyGVNm-xq9tKqPcLg7l-jb-dnX1afi4svHz6uTi8KwmqWCW8aEZFDVVlPdGCOB17oSqjOlUNBIZqiwQlNS1oqzkmqmrSDKMkGltA1boreP3k3wPyaIqR1cNND3agQ_xZbKRnIpqxzDEh3_g974KYz5dzPVlCLHOQvpI2WCjzGAbTfBDSpsW0raeRXtf6vIPUc786QH6J46_mSfAbaTqkEH113DX7Of1f4GOSGY4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988264698</pqid></control><display><type>article</type><title>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</title><source>Cambridge University Press Journals Complete</source><creator>Hill, Sarah E. ; Proffitt Leyva, Randi P. ; DelPriore, Danielle J.</creator><creatorcontrib>Hill, Sarah E. ; Proffitt Leyva, Randi P. ; DelPriore, Danielle J.</creatorcontrib><description>The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts.</description><identifier>ISSN: 0140-525X</identifier><identifier>EISSN: 1469-1825</identifier><identifier>DOI: 10.1017/S0140525X16001448</identifier><identifier>PMID: 29342579</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Adipose tissue ; Body fat ; Body weight ; Eating behavior ; Food ; Food security ; Food supply ; Gender differences ; Hypotheses ; Metabolism ; Model accuracy ; Nutrition ; Obesity ; Open Peer Commentary ; Overweight ; Risk factors ; Women</subject><ispartof>The Behavioral and brain sciences, 2017, Vol.40, p.e119-e119, Article e119</ispartof><rights>Copyright © Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</citedby><cites>FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0140525X16001448/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,4009,27901,27902,27903,55605</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29342579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, Sarah E.</creatorcontrib><creatorcontrib>Proffitt Leyva, Randi P.</creatorcontrib><creatorcontrib>DelPriore, Danielle J.</creatorcontrib><title>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</title><title>The Behavioral and brain sciences</title><addtitle>Behav Brain Sci</addtitle><description>The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts.</description><subject>Adipose tissue</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Eating behavior</subject><subject>Food</subject><subject>Food security</subject><subject>Food supply</subject><subject>Gender differences</subject><subject>Hypotheses</subject><subject>Metabolism</subject><subject>Model accuracy</subject><subject>Nutrition</subject><subject>Obesity</subject><subject>Open Peer Commentary</subject><subject>Overweight</subject><subject>Risk factors</subject><subject>Women</subject><issn>0140-525X</issn><issn>1469-1825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFq3DAUhkVJSabTHKCbIMimG7eSZclWd8mQtIVAA2mhOyPJTxkF25pKMmV2uUMukLPkKD1JZTINpSUrSbzvfU_8D6E3lLyjhNbvrwitCC_5dypIvlbNC7SglZAFbUq-hxZzuZjrB-hVjDeEEF5xuY8OSsmqktdygfrLAJ0zyY3XeD0NasSqcxsfXdo-3P-6vXu4j36A5AaIu_dPl9bYet9hN0YwU8joB3wavOpgxGkNePAd9BkJWENKELAyGVNm-xq9tKqPcLg7l-jb-dnX1afi4svHz6uTi8KwmqWCW8aEZFDVVlPdGCOB17oSqjOlUNBIZqiwQlNS1oqzkmqmrSDKMkGltA1boreP3k3wPyaIqR1cNND3agQ_xZbKRnIpqxzDEh3_g974KYz5dzPVlCLHOQvpI2WCjzGAbTfBDSpsW0raeRXtf6vIPUc786QH6J46_mSfAbaTqkEH113DX7Of1f4GOSGY4Q</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Hill, Sarah E.</creator><creator>Proffitt Leyva, Randi P.</creator><creator>DelPriore, Danielle J.</creator><general>Cambridge University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</title><author>Hill, Sarah E. ; Proffitt Leyva, Randi P. ; DelPriore, Danielle J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adipose tissue</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Eating behavior</topic><topic>Food</topic><topic>Food security</topic><topic>Food supply</topic><topic>Gender differences</topic><topic>Hypotheses</topic><topic>Metabolism</topic><topic>Model accuracy</topic><topic>Nutrition</topic><topic>Obesity</topic><topic>Open Peer Commentary</topic><topic>Overweight</topic><topic>Risk factors</topic><topic>Women</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, Sarah E.</creatorcontrib><creatorcontrib>Proffitt Leyva, Randi P.</creatorcontrib><creatorcontrib>DelPriore, Danielle J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The Behavioral and brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, Sarah E.</au><au>Proffitt Leyva, Randi P.</au><au>DelPriore, Danielle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</atitle><jtitle>The Behavioral and brain sciences</jtitle><addtitle>Behav Brain Sci</addtitle><date>2017</date><risdate>2017</risdate><volume>40</volume><spage>e119</spage><epage>e119</epage><pages>e119-e119</pages><artnum>e119</artnum><issn>0140-525X</issn><eissn>1469-1825</eissn><abstract>The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>29342579</pmid><doi>10.1017/S0140525X16001448</doi><tpages>2</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0140-525X
ispartof The Behavioral and brain sciences, 2017, Vol.40, p.e119-e119, Article e119
issn 0140-525X
1469-1825
language eng
recordid cdi_proquest_miscellaneous_1989599429
source Cambridge University Press Journals Complete
subjects Adipose tissue
Body fat
Body weight
Eating behavior
Food
Food security
Food supply
Gender differences
Hypotheses
Metabolism
Model accuracy
Nutrition
Obesity
Open Peer Commentary
Overweight
Risk factors
Women
title Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20human%20adiposity%C2%A0%E2%80%93%C2%A0sometimes%C2%A0%E2%80%93%C2%A0with%20food%20insecurity:%20Broaden%20the%20model%20for%20better%20accuracy&rft.jtitle=The%20Behavioral%20and%20brain%20sciences&rft.au=Hill,%20Sarah%20E.&rft.date=2017&rft.volume=40&rft.spage=e119&rft.epage=e119&rft.pages=e119-e119&rft.artnum=e119&rft.issn=0140-525X&rft.eissn=1469-1825&rft_id=info:doi/10.1017/S0140525X16001448&rft_dat=%3Cproquest_cross%3E1989599429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988264698&rft_id=info:pmid/29342579&rft_cupid=10_1017_S0140525X16001448&rfr_iscdi=true