Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy
The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in p...
Gespeichert in:
Veröffentlicht in: | The Behavioral and brain sciences 2017, Vol.40, p.e119-e119, Article e119 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e119 |
---|---|
container_issue | |
container_start_page | e119 |
container_title | The Behavioral and brain sciences |
container_volume | 40 |
creator | Hill, Sarah E. Proffitt Leyva, Randi P. DelPriore, Danielle J. |
description | The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts. |
doi_str_mv | 10.1017/S0140525X16001448 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989599429</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_S0140525X16001448</cupid><sourcerecordid>1989599429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</originalsourceid><addsrcrecordid>eNp1kUFq3DAUhkVJSabTHKCbIMimG7eSZclWd8mQtIVAA2mhOyPJTxkF25pKMmV2uUMukLPkKD1JZTINpSUrSbzvfU_8D6E3lLyjhNbvrwitCC_5dypIvlbNC7SglZAFbUq-hxZzuZjrB-hVjDeEEF5xuY8OSsmqktdygfrLAJ0zyY3XeD0NasSqcxsfXdo-3P-6vXu4j36A5AaIu_dPl9bYet9hN0YwU8joB3wavOpgxGkNePAd9BkJWENKELAyGVNm-xq9tKqPcLg7l-jb-dnX1afi4svHz6uTi8KwmqWCW8aEZFDVVlPdGCOB17oSqjOlUNBIZqiwQlNS1oqzkmqmrSDKMkGltA1boreP3k3wPyaIqR1cNND3agQ_xZbKRnIpqxzDEh3_g974KYz5dzPVlCLHOQvpI2WCjzGAbTfBDSpsW0raeRXtf6vIPUc786QH6J46_mSfAbaTqkEH113DX7Of1f4GOSGY4Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988264698</pqid></control><display><type>article</type><title>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</title><source>Cambridge University Press Journals Complete</source><creator>Hill, Sarah E. ; Proffitt Leyva, Randi P. ; DelPriore, Danielle J.</creator><creatorcontrib>Hill, Sarah E. ; Proffitt Leyva, Randi P. ; DelPriore, Danielle J.</creatorcontrib><description>The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts.</description><identifier>ISSN: 0140-525X</identifier><identifier>EISSN: 1469-1825</identifier><identifier>DOI: 10.1017/S0140525X16001448</identifier><identifier>PMID: 29342579</identifier><language>eng</language><publisher>New York, USA: Cambridge University Press</publisher><subject>Adipose tissue ; Body fat ; Body weight ; Eating behavior ; Food ; Food security ; Food supply ; Gender differences ; Hypotheses ; Metabolism ; Model accuracy ; Nutrition ; Obesity ; Open Peer Commentary ; Overweight ; Risk factors ; Women</subject><ispartof>The Behavioral and brain sciences, 2017, Vol.40, p.e119-e119, Article e119</ispartof><rights>Copyright © Cambridge University Press 2017</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</citedby><cites>FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0140525X16001448/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,776,780,4009,27901,27902,27903,55605</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29342579$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hill, Sarah E.</creatorcontrib><creatorcontrib>Proffitt Leyva, Randi P.</creatorcontrib><creatorcontrib>DelPriore, Danielle J.</creatorcontrib><title>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</title><title>The Behavioral and brain sciences</title><addtitle>Behav Brain Sci</addtitle><description>The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts.</description><subject>Adipose tissue</subject><subject>Body fat</subject><subject>Body weight</subject><subject>Eating behavior</subject><subject>Food</subject><subject>Food security</subject><subject>Food supply</subject><subject>Gender differences</subject><subject>Hypotheses</subject><subject>Metabolism</subject><subject>Model accuracy</subject><subject>Nutrition</subject><subject>Obesity</subject><subject>Open Peer Commentary</subject><subject>Overweight</subject><subject>Risk factors</subject><subject>Women</subject><issn>0140-525X</issn><issn>1469-1825</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kUFq3DAUhkVJSabTHKCbIMimG7eSZclWd8mQtIVAA2mhOyPJTxkF25pKMmV2uUMukLPkKD1JZTINpSUrSbzvfU_8D6E3lLyjhNbvrwitCC_5dypIvlbNC7SglZAFbUq-hxZzuZjrB-hVjDeEEF5xuY8OSsmqktdygfrLAJ0zyY3XeD0NasSqcxsfXdo-3P-6vXu4j36A5AaIu_dPl9bYet9hN0YwU8joB3wavOpgxGkNePAd9BkJWENKELAyGVNm-xq9tKqPcLg7l-jb-dnX1afi4svHz6uTi8KwmqWCW8aEZFDVVlPdGCOB17oSqjOlUNBIZqiwQlNS1oqzkmqmrSDKMkGltA1boreP3k3wPyaIqR1cNND3agQ_xZbKRnIpqxzDEh3_g974KYz5dzPVlCLHOQvpI2WCjzGAbTfBDSpsW0raeRXtf6vIPUc786QH6J46_mSfAbaTqkEH113DX7Of1f4GOSGY4Q</recordid><startdate>2017</startdate><enddate>2017</enddate><creator>Hill, Sarah E.</creator><creator>Proffitt Leyva, Randi P.</creator><creator>DelPriore, Danielle J.</creator><general>Cambridge University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88G</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>Q9U</scope><scope>7X8</scope></search><sort><creationdate>2017</creationdate><title>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</title><author>Hill, Sarah E. ; Proffitt Leyva, Randi P. ; DelPriore, Danielle J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c373t-5f33693e47fb1b8cc9e57b46adc26ae893c16f6b1027a5321b3bf60af36199f83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adipose tissue</topic><topic>Body fat</topic><topic>Body weight</topic><topic>Eating behavior</topic><topic>Food</topic><topic>Food security</topic><topic>Food supply</topic><topic>Gender differences</topic><topic>Hypotheses</topic><topic>Metabolism</topic><topic>Model accuracy</topic><topic>Nutrition</topic><topic>Obesity</topic><topic>Open Peer Commentary</topic><topic>Overweight</topic><topic>Risk factors</topic><topic>Women</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hill, Sarah E.</creatorcontrib><creatorcontrib>Proffitt Leyva, Randi P.</creatorcontrib><creatorcontrib>DelPriore, Danielle J.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Psychology</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><jtitle>The Behavioral and brain sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hill, Sarah E.</au><au>Proffitt Leyva, Randi P.</au><au>DelPriore, Danielle J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy</atitle><jtitle>The Behavioral and brain sciences</jtitle><addtitle>Behav Brain Sci</addtitle><date>2017</date><risdate>2017</risdate><volume>40</volume><spage>e119</spage><epage>e119</epage><pages>e119-e119</pages><artnum>e119</artnum><issn>0140-525X</issn><eissn>1469-1825</eissn><abstract>The target article explores the role of food insecurity as a contemporary risk factor for human overweight and obesity. The authors provide conditional support for the insurance hypothesis among adult women from high-income countries. We consider the potential contribution of additional factors in producing variation in adiposity patterns between species and across human contexts.</abstract><cop>New York, USA</cop><pub>Cambridge University Press</pub><pmid>29342579</pmid><doi>10.1017/S0140525X16001448</doi><tpages>2</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0140-525X |
ispartof | The Behavioral and brain sciences, 2017, Vol.40, p.e119-e119, Article e119 |
issn | 0140-525X 1469-1825 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989599429 |
source | Cambridge University Press Journals Complete |
subjects | Adipose tissue Body fat Body weight Eating behavior Food Food security Food supply Gender differences Hypotheses Metabolism Model accuracy Nutrition Obesity Open Peer Commentary Overweight Risk factors Women |
title | Predicting human adiposity – sometimes – with food insecurity: Broaden the model for better accuracy |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T10%3A10%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20human%20adiposity%C2%A0%E2%80%93%C2%A0sometimes%C2%A0%E2%80%93%C2%A0with%20food%20insecurity:%20Broaden%20the%20model%20for%20better%20accuracy&rft.jtitle=The%20Behavioral%20and%20brain%20sciences&rft.au=Hill,%20Sarah%20E.&rft.date=2017&rft.volume=40&rft.spage=e119&rft.epage=e119&rft.pages=e119-e119&rft.artnum=e119&rft.issn=0140-525X&rft.eissn=1469-1825&rft_id=info:doi/10.1017/S0140525X16001448&rft_dat=%3Cproquest_cross%3E1989599429%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988264698&rft_id=info:pmid/29342579&rft_cupid=10_1017_S0140525X16001448&rfr_iscdi=true |