A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma
The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented i...
Gespeichert in:
Veröffentlicht in: | Clinical cancer research 2018-03, Vol.24 (6), p.1355-1363 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1363 |
---|---|
container_issue | 6 |
container_start_page | 1355 |
container_title | Clinical cancer research |
container_volume | 24 |
creator | Gómez, Soledad Garrido-Garcia, Alícia Garcia-Gerique, Laura Lemos, Isadora Suñol, Mariona de Torres, Carmen Kulis, Marta Pérez-Jaume, Sara Carcaboso, Ángel M Luu, Betty Kieran, Mark W Jabado, Nada Kozlenkov, Alexey Dracheva, Stella Ramaswamy, Vijay Hovestadt, Volker Johann, Pascal Jones, David T W Pfister, Stefan M Morales La Madrid, Andrés Cruz, Ofelia Taylor, Michael D Martin-Subero, Jose-Ignacio Mora, Jaume Lavarino, Cinzia |
description | The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma.
We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing.
Using a LDA-based approach, we developed and validated a prediction method (
WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The
WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers (
G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors.
WNT-SHH and
G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples.
The
WNT-SHH and
G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods.
. |
doi_str_mv | 10.1158/1078-0432.CCR-17-2243 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989598795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989598795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMobk7_BKXgxUtnvqRpmuMo_oJNYeo5pG0yO9KlJq3gf2_LpgdP33t43pePB6FLwHMAlt0C5lmME0rmeb6OgceEJPQITYExHlOSsuMh_zITdBbCFmNIACenaEIEZSCAT9FiET27L22jle4-XBUZ56O1ausqWjmry94qH732xca7vq13m8iZgax6a11hVehco87RiVE26IvDnaH3-7u3_DFevjw85YtlXCYMdzGkjALFGTFZUlDgiiigrCy5YYkGmhUVFUapCqhgUFZpQkSFhc5MAZSbktIZutnvtt599jp0sqlDqa1VO-36IEFkgomMCzag1__Qrev9bvhOEgw0Hbg0HSi2p0rvQvDayNbXjfLfErAcHcvRnxz9ycGxBC5Hx0Pv6rDeF42u_lq_UukPb_F1ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013695966</pqid></control><display><type>article</type><title>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</title><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gómez, Soledad ; Garrido-Garcia, Alícia ; Garcia-Gerique, Laura ; Lemos, Isadora ; Suñol, Mariona ; de Torres, Carmen ; Kulis, Marta ; Pérez-Jaume, Sara ; Carcaboso, Ángel M ; Luu, Betty ; Kieran, Mark W ; Jabado, Nada ; Kozlenkov, Alexey ; Dracheva, Stella ; Ramaswamy, Vijay ; Hovestadt, Volker ; Johann, Pascal ; Jones, David T W ; Pfister, Stefan M ; Morales La Madrid, Andrés ; Cruz, Ofelia ; Taylor, Michael D ; Martin-Subero, Jose-Ignacio ; Mora, Jaume ; Lavarino, Cinzia</creator><creatorcontrib>Gómez, Soledad ; Garrido-Garcia, Alícia ; Garcia-Gerique, Laura ; Lemos, Isadora ; Suñol, Mariona ; de Torres, Carmen ; Kulis, Marta ; Pérez-Jaume, Sara ; Carcaboso, Ángel M ; Luu, Betty ; Kieran, Mark W ; Jabado, Nada ; Kozlenkov, Alexey ; Dracheva, Stella ; Ramaswamy, Vijay ; Hovestadt, Volker ; Johann, Pascal ; Jones, David T W ; Pfister, Stefan M ; Morales La Madrid, Andrés ; Cruz, Ofelia ; Taylor, Michael D ; Martin-Subero, Jose-Ignacio ; Mora, Jaume ; Lavarino, Cinzia</creatorcontrib><description>The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma.
We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing.
Using a LDA-based approach, we developed and validated a prediction method (
WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The
WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers (
G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors.
WNT-SHH and
G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples.
The
WNT-SHH and
G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods.
.</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-17-2243</identifier><identifier>PMID: 29351917</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>Biomarkers ; Bisulfite ; Cancer ; Classification ; Classifiers ; Clinical trials ; Deoxyribonucleic acid ; Discriminant analysis ; DNA ; DNA methylation ; DNA microarrays ; DNA sequencing ; Experimental design ; Formaldehyde ; Genetic testing ; Medical research ; Medulloblastoma ; Metastases ; Methods ; Paraffin ; Subgroups ; Tissues ; Tumors ; Wnt protein</subject><ispartof>Clinical cancer research, 2018-03, Vol.24 (6), p.1355-1363</ispartof><rights>2018 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Mar 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</citedby><cites>FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29351917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Soledad</creatorcontrib><creatorcontrib>Garrido-Garcia, Alícia</creatorcontrib><creatorcontrib>Garcia-Gerique, Laura</creatorcontrib><creatorcontrib>Lemos, Isadora</creatorcontrib><creatorcontrib>Suñol, Mariona</creatorcontrib><creatorcontrib>de Torres, Carmen</creatorcontrib><creatorcontrib>Kulis, Marta</creatorcontrib><creatorcontrib>Pérez-Jaume, Sara</creatorcontrib><creatorcontrib>Carcaboso, Ángel M</creatorcontrib><creatorcontrib>Luu, Betty</creatorcontrib><creatorcontrib>Kieran, Mark W</creatorcontrib><creatorcontrib>Jabado, Nada</creatorcontrib><creatorcontrib>Kozlenkov, Alexey</creatorcontrib><creatorcontrib>Dracheva, Stella</creatorcontrib><creatorcontrib>Ramaswamy, Vijay</creatorcontrib><creatorcontrib>Hovestadt, Volker</creatorcontrib><creatorcontrib>Johann, Pascal</creatorcontrib><creatorcontrib>Jones, David T W</creatorcontrib><creatorcontrib>Pfister, Stefan M</creatorcontrib><creatorcontrib>Morales La Madrid, Andrés</creatorcontrib><creatorcontrib>Cruz, Ofelia</creatorcontrib><creatorcontrib>Taylor, Michael D</creatorcontrib><creatorcontrib>Martin-Subero, Jose-Ignacio</creatorcontrib><creatorcontrib>Mora, Jaume</creatorcontrib><creatorcontrib>Lavarino, Cinzia</creatorcontrib><title>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma.
We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing.
Using a LDA-based approach, we developed and validated a prediction method (
WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The
WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers (
G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors.
WNT-SHH and
G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples.
The
WNT-SHH and
G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods.
.</description><subject>Biomarkers</subject><subject>Bisulfite</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Clinical trials</subject><subject>Deoxyribonucleic acid</subject><subject>Discriminant analysis</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA microarrays</subject><subject>DNA sequencing</subject><subject>Experimental design</subject><subject>Formaldehyde</subject><subject>Genetic testing</subject><subject>Medical research</subject><subject>Medulloblastoma</subject><subject>Metastases</subject><subject>Methods</subject><subject>Paraffin</subject><subject>Subgroups</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Wnt protein</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAYhoMobk7_BKXgxUtnvqRpmuMo_oJNYeo5pG0yO9KlJq3gf2_LpgdP33t43pePB6FLwHMAlt0C5lmME0rmeb6OgceEJPQITYExHlOSsuMh_zITdBbCFmNIACenaEIEZSCAT9FiET27L22jle4-XBUZ56O1ausqWjmry94qH732xca7vq13m8iZgax6a11hVehco87RiVE26IvDnaH3-7u3_DFevjw85YtlXCYMdzGkjALFGTFZUlDgiiigrCy5YYkGmhUVFUapCqhgUFZpQkSFhc5MAZSbktIZutnvtt599jp0sqlDqa1VO-36IEFkgomMCzag1__Qrev9bvhOEgw0Hbg0HSi2p0rvQvDayNbXjfLfErAcHcvRnxz9ycGxBC5Hx0Pv6rDeF42u_lq_UukPb_F1ZQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Gómez, Soledad</creator><creator>Garrido-Garcia, Alícia</creator><creator>Garcia-Gerique, Laura</creator><creator>Lemos, Isadora</creator><creator>Suñol, Mariona</creator><creator>de Torres, Carmen</creator><creator>Kulis, Marta</creator><creator>Pérez-Jaume, Sara</creator><creator>Carcaboso, Ángel M</creator><creator>Luu, Betty</creator><creator>Kieran, Mark W</creator><creator>Jabado, Nada</creator><creator>Kozlenkov, Alexey</creator><creator>Dracheva, Stella</creator><creator>Ramaswamy, Vijay</creator><creator>Hovestadt, Volker</creator><creator>Johann, Pascal</creator><creator>Jones, David T W</creator><creator>Pfister, Stefan M</creator><creator>Morales La Madrid, Andrés</creator><creator>Cruz, Ofelia</creator><creator>Taylor, Michael D</creator><creator>Martin-Subero, Jose-Ignacio</creator><creator>Mora, Jaume</creator><creator>Lavarino, Cinzia</creator><general>American Association for Cancer Research Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20180315</creationdate><title>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</title><author>Gómez, Soledad ; Garrido-Garcia, Alícia ; Garcia-Gerique, Laura ; Lemos, Isadora ; Suñol, Mariona ; de Torres, Carmen ; Kulis, Marta ; Pérez-Jaume, Sara ; Carcaboso, Ángel M ; Luu, Betty ; Kieran, Mark W ; Jabado, Nada ; Kozlenkov, Alexey ; Dracheva, Stella ; Ramaswamy, Vijay ; Hovestadt, Volker ; Johann, Pascal ; Jones, David T W ; Pfister, Stefan M ; Morales La Madrid, Andrés ; Cruz, Ofelia ; Taylor, Michael D ; Martin-Subero, Jose-Ignacio ; Mora, Jaume ; Lavarino, Cinzia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomarkers</topic><topic>Bisulfite</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Clinical trials</topic><topic>Deoxyribonucleic acid</topic><topic>Discriminant analysis</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA microarrays</topic><topic>DNA sequencing</topic><topic>Experimental design</topic><topic>Formaldehyde</topic><topic>Genetic testing</topic><topic>Medical research</topic><topic>Medulloblastoma</topic><topic>Metastases</topic><topic>Methods</topic><topic>Paraffin</topic><topic>Subgroups</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Soledad</creatorcontrib><creatorcontrib>Garrido-Garcia, Alícia</creatorcontrib><creatorcontrib>Garcia-Gerique, Laura</creatorcontrib><creatorcontrib>Lemos, Isadora</creatorcontrib><creatorcontrib>Suñol, Mariona</creatorcontrib><creatorcontrib>de Torres, Carmen</creatorcontrib><creatorcontrib>Kulis, Marta</creatorcontrib><creatorcontrib>Pérez-Jaume, Sara</creatorcontrib><creatorcontrib>Carcaboso, Ángel M</creatorcontrib><creatorcontrib>Luu, Betty</creatorcontrib><creatorcontrib>Kieran, Mark W</creatorcontrib><creatorcontrib>Jabado, Nada</creatorcontrib><creatorcontrib>Kozlenkov, Alexey</creatorcontrib><creatorcontrib>Dracheva, Stella</creatorcontrib><creatorcontrib>Ramaswamy, Vijay</creatorcontrib><creatorcontrib>Hovestadt, Volker</creatorcontrib><creatorcontrib>Johann, Pascal</creatorcontrib><creatorcontrib>Jones, David T W</creatorcontrib><creatorcontrib>Pfister, Stefan M</creatorcontrib><creatorcontrib>Morales La Madrid, Andrés</creatorcontrib><creatorcontrib>Cruz, Ofelia</creatorcontrib><creatorcontrib>Taylor, Michael D</creatorcontrib><creatorcontrib>Martin-Subero, Jose-Ignacio</creatorcontrib><creatorcontrib>Mora, Jaume</creatorcontrib><creatorcontrib>Lavarino, Cinzia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Soledad</au><au>Garrido-Garcia, Alícia</au><au>Garcia-Gerique, Laura</au><au>Lemos, Isadora</au><au>Suñol, Mariona</au><au>de Torres, Carmen</au><au>Kulis, Marta</au><au>Pérez-Jaume, Sara</au><au>Carcaboso, Ángel M</au><au>Luu, Betty</au><au>Kieran, Mark W</au><au>Jabado, Nada</au><au>Kozlenkov, Alexey</au><au>Dracheva, Stella</au><au>Ramaswamy, Vijay</au><au>Hovestadt, Volker</au><au>Johann, Pascal</au><au>Jones, David T W</au><au>Pfister, Stefan M</au><au>Morales La Madrid, Andrés</au><au>Cruz, Ofelia</au><au>Taylor, Michael D</au><au>Martin-Subero, Jose-Ignacio</au><au>Mora, Jaume</au><au>Lavarino, Cinzia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2018-03-15</date><risdate>2018</risdate><volume>24</volume><issue>6</issue><spage>1355</spage><epage>1363</epage><pages>1355-1363</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma.
We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing.
Using a LDA-based approach, we developed and validated a prediction method (
WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The
WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers (
G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors.
WNT-SHH and
G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples.
The
WNT-SHH and
G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods.
.</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>29351917</pmid><doi>10.1158/1078-0432.CCR-17-2243</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1078-0432 |
ispartof | Clinical cancer research, 2018-03, Vol.24 (6), p.1355-1363 |
issn | 1078-0432 1557-3265 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989598795 |
source | American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection |
subjects | Biomarkers Bisulfite Cancer Classification Classifiers Clinical trials Deoxyribonucleic acid Discriminant analysis DNA DNA methylation DNA microarrays DNA sequencing Experimental design Formaldehyde Genetic testing Medical research Medulloblastoma Metastases Methods Paraffin Subgroups Tissues Tumors Wnt protein |
title | A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Rapid%20Molecular%20Subgrouping%20of%20Medulloblastoma&rft.jtitle=Clinical%20cancer%20research&rft.au=G%C3%B3mez,%20Soledad&rft.date=2018-03-15&rft.volume=24&rft.issue=6&rft.spage=1355&rft.epage=1363&rft.pages=1355-1363&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-17-2243&rft_dat=%3Cproquest_cross%3E1989598795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013695966&rft_id=info:pmid/29351917&rfr_iscdi=true |