A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma

The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented i...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Clinical cancer research 2018-03, Vol.24 (6), p.1355-1363
Hauptverfasser: Gómez, Soledad, Garrido-Garcia, Alícia, Garcia-Gerique, Laura, Lemos, Isadora, Suñol, Mariona, de Torres, Carmen, Kulis, Marta, Pérez-Jaume, Sara, Carcaboso, Ángel M, Luu, Betty, Kieran, Mark W, Jabado, Nada, Kozlenkov, Alexey, Dracheva, Stella, Ramaswamy, Vijay, Hovestadt, Volker, Johann, Pascal, Jones, David T W, Pfister, Stefan M, Morales La Madrid, Andrés, Cruz, Ofelia, Taylor, Michael D, Martin-Subero, Jose-Ignacio, Mora, Jaume, Lavarino, Cinzia
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1363
container_issue 6
container_start_page 1355
container_title Clinical cancer research
container_volume 24
creator Gómez, Soledad
Garrido-Garcia, Alícia
Garcia-Gerique, Laura
Lemos, Isadora
Suñol, Mariona
de Torres, Carmen
Kulis, Marta
Pérez-Jaume, Sara
Carcaboso, Ángel M
Luu, Betty
Kieran, Mark W
Jabado, Nada
Kozlenkov, Alexey
Dracheva, Stella
Ramaswamy, Vijay
Hovestadt, Volker
Johann, Pascal
Jones, David T W
Pfister, Stefan M
Morales La Madrid, Andrés
Cruz, Ofelia
Taylor, Michael D
Martin-Subero, Jose-Ignacio
Mora, Jaume
Lavarino, Cinzia
description The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma. We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing. Using a LDA-based approach, we developed and validated a prediction method ( WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (>99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers ( G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. WNT-SHH and G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples. The WNT-SHH and G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. .
doi_str_mv 10.1158/1078-0432.CCR-17-2243
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989598795</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989598795</sourcerecordid><originalsourceid>FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</originalsourceid><addsrcrecordid>eNpdkM9LwzAYhoMobk7_BKXgxUtnvqRpmuMo_oJNYeo5pG0yO9KlJq3gf2_LpgdP33t43pePB6FLwHMAlt0C5lmME0rmeb6OgceEJPQITYExHlOSsuMh_zITdBbCFmNIACenaEIEZSCAT9FiET27L22jle4-XBUZ56O1ausqWjmry94qH732xca7vq13m8iZgax6a11hVehco87RiVE26IvDnaH3-7u3_DFevjw85YtlXCYMdzGkjALFGTFZUlDgiiigrCy5YYkGmhUVFUapCqhgUFZpQkSFhc5MAZSbktIZutnvtt599jp0sqlDqa1VO-36IEFkgomMCzag1__Qrev9bvhOEgw0Hbg0HSi2p0rvQvDayNbXjfLfErAcHcvRnxz9ycGxBC5Hx0Pv6rDeF42u_lq_UukPb_F1ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2013695966</pqid></control><display><type>article</type><title>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</title><source>American Association for Cancer Research</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Gómez, Soledad ; Garrido-Garcia, Alícia ; Garcia-Gerique, Laura ; Lemos, Isadora ; Suñol, Mariona ; de Torres, Carmen ; Kulis, Marta ; Pérez-Jaume, Sara ; Carcaboso, Ángel M ; Luu, Betty ; Kieran, Mark W ; Jabado, Nada ; Kozlenkov, Alexey ; Dracheva, Stella ; Ramaswamy, Vijay ; Hovestadt, Volker ; Johann, Pascal ; Jones, David T W ; Pfister, Stefan M ; Morales La Madrid, Andrés ; Cruz, Ofelia ; Taylor, Michael D ; Martin-Subero, Jose-Ignacio ; Mora, Jaume ; Lavarino, Cinzia</creator><creatorcontrib>Gómez, Soledad ; Garrido-Garcia, Alícia ; Garcia-Gerique, Laura ; Lemos, Isadora ; Suñol, Mariona ; de Torres, Carmen ; Kulis, Marta ; Pérez-Jaume, Sara ; Carcaboso, Ángel M ; Luu, Betty ; Kieran, Mark W ; Jabado, Nada ; Kozlenkov, Alexey ; Dracheva, Stella ; Ramaswamy, Vijay ; Hovestadt, Volker ; Johann, Pascal ; Jones, David T W ; Pfister, Stefan M ; Morales La Madrid, Andrés ; Cruz, Ofelia ; Taylor, Michael D ; Martin-Subero, Jose-Ignacio ; Mora, Jaume ; Lavarino, Cinzia</creatorcontrib><description>The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma. We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing. Using a LDA-based approach, we developed and validated a prediction method ( WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (&gt;99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers ( G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. WNT-SHH and G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples. The WNT-SHH and G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. .</description><identifier>ISSN: 1078-0432</identifier><identifier>EISSN: 1557-3265</identifier><identifier>DOI: 10.1158/1078-0432.CCR-17-2243</identifier><identifier>PMID: 29351917</identifier><language>eng</language><publisher>United States: American Association for Cancer Research Inc</publisher><subject>Biomarkers ; Bisulfite ; Cancer ; Classification ; Classifiers ; Clinical trials ; Deoxyribonucleic acid ; Discriminant analysis ; DNA ; DNA methylation ; DNA microarrays ; DNA sequencing ; Experimental design ; Formaldehyde ; Genetic testing ; Medical research ; Medulloblastoma ; Metastases ; Methods ; Paraffin ; Subgroups ; Tissues ; Tumors ; Wnt protein</subject><ispartof>Clinical cancer research, 2018-03, Vol.24 (6), p.1355-1363</ispartof><rights>2018 American Association for Cancer Research.</rights><rights>Copyright American Association for Cancer Research Inc Mar 15, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</citedby><cites>FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,3343,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29351917$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gómez, Soledad</creatorcontrib><creatorcontrib>Garrido-Garcia, Alícia</creatorcontrib><creatorcontrib>Garcia-Gerique, Laura</creatorcontrib><creatorcontrib>Lemos, Isadora</creatorcontrib><creatorcontrib>Suñol, Mariona</creatorcontrib><creatorcontrib>de Torres, Carmen</creatorcontrib><creatorcontrib>Kulis, Marta</creatorcontrib><creatorcontrib>Pérez-Jaume, Sara</creatorcontrib><creatorcontrib>Carcaboso, Ángel M</creatorcontrib><creatorcontrib>Luu, Betty</creatorcontrib><creatorcontrib>Kieran, Mark W</creatorcontrib><creatorcontrib>Jabado, Nada</creatorcontrib><creatorcontrib>Kozlenkov, Alexey</creatorcontrib><creatorcontrib>Dracheva, Stella</creatorcontrib><creatorcontrib>Ramaswamy, Vijay</creatorcontrib><creatorcontrib>Hovestadt, Volker</creatorcontrib><creatorcontrib>Johann, Pascal</creatorcontrib><creatorcontrib>Jones, David T W</creatorcontrib><creatorcontrib>Pfister, Stefan M</creatorcontrib><creatorcontrib>Morales La Madrid, Andrés</creatorcontrib><creatorcontrib>Cruz, Ofelia</creatorcontrib><creatorcontrib>Taylor, Michael D</creatorcontrib><creatorcontrib>Martin-Subero, Jose-Ignacio</creatorcontrib><creatorcontrib>Mora, Jaume</creatorcontrib><creatorcontrib>Lavarino, Cinzia</creatorcontrib><title>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</title><title>Clinical cancer research</title><addtitle>Clin Cancer Res</addtitle><description>The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma. We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing. Using a LDA-based approach, we developed and validated a prediction method ( WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (&gt;99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers ( G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. WNT-SHH and G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples. The WNT-SHH and G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. .</description><subject>Biomarkers</subject><subject>Bisulfite</subject><subject>Cancer</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Clinical trials</subject><subject>Deoxyribonucleic acid</subject><subject>Discriminant analysis</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>DNA microarrays</subject><subject>DNA sequencing</subject><subject>Experimental design</subject><subject>Formaldehyde</subject><subject>Genetic testing</subject><subject>Medical research</subject><subject>Medulloblastoma</subject><subject>Metastases</subject><subject>Methods</subject><subject>Paraffin</subject><subject>Subgroups</subject><subject>Tissues</subject><subject>Tumors</subject><subject>Wnt protein</subject><issn>1078-0432</issn><issn>1557-3265</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdkM9LwzAYhoMobk7_BKXgxUtnvqRpmuMo_oJNYeo5pG0yO9KlJq3gf2_LpgdP33t43pePB6FLwHMAlt0C5lmME0rmeb6OgceEJPQITYExHlOSsuMh_zITdBbCFmNIACenaEIEZSCAT9FiET27L22jle4-XBUZ56O1ausqWjmry94qH732xca7vq13m8iZgax6a11hVehco87RiVE26IvDnaH3-7u3_DFevjw85YtlXCYMdzGkjALFGTFZUlDgiiigrCy5YYkGmhUVFUapCqhgUFZpQkSFhc5MAZSbktIZutnvtt599jp0sqlDqa1VO-36IEFkgomMCzag1__Qrev9bvhOEgw0Hbg0HSi2p0rvQvDayNbXjfLfErAcHcvRnxz9ycGxBC5Hx0Pv6rDeF42u_lq_UukPb_F1ZQ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Gómez, Soledad</creator><creator>Garrido-Garcia, Alícia</creator><creator>Garcia-Gerique, Laura</creator><creator>Lemos, Isadora</creator><creator>Suñol, Mariona</creator><creator>de Torres, Carmen</creator><creator>Kulis, Marta</creator><creator>Pérez-Jaume, Sara</creator><creator>Carcaboso, Ángel M</creator><creator>Luu, Betty</creator><creator>Kieran, Mark W</creator><creator>Jabado, Nada</creator><creator>Kozlenkov, Alexey</creator><creator>Dracheva, Stella</creator><creator>Ramaswamy, Vijay</creator><creator>Hovestadt, Volker</creator><creator>Johann, Pascal</creator><creator>Jones, David T W</creator><creator>Pfister, Stefan M</creator><creator>Morales La Madrid, Andrés</creator><creator>Cruz, Ofelia</creator><creator>Taylor, Michael D</creator><creator>Martin-Subero, Jose-Ignacio</creator><creator>Mora, Jaume</creator><creator>Lavarino, Cinzia</creator><general>American Association for Cancer Research Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T5</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20180315</creationdate><title>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</title><author>Gómez, Soledad ; Garrido-Garcia, Alícia ; Garcia-Gerique, Laura ; Lemos, Isadora ; Suñol, Mariona ; de Torres, Carmen ; Kulis, Marta ; Pérez-Jaume, Sara ; Carcaboso, Ángel M ; Luu, Betty ; Kieran, Mark W ; Jabado, Nada ; Kozlenkov, Alexey ; Dracheva, Stella ; Ramaswamy, Vijay ; Hovestadt, Volker ; Johann, Pascal ; Jones, David T W ; Pfister, Stefan M ; Morales La Madrid, Andrés ; Cruz, Ofelia ; Taylor, Michael D ; Martin-Subero, Jose-Ignacio ; Mora, Jaume ; Lavarino, Cinzia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c450t-165313082f84b317a2a135cc7f54e138bd39faad13951cd6429d09e8fb137fc33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biomarkers</topic><topic>Bisulfite</topic><topic>Cancer</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Clinical trials</topic><topic>Deoxyribonucleic acid</topic><topic>Discriminant analysis</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>DNA microarrays</topic><topic>DNA sequencing</topic><topic>Experimental design</topic><topic>Formaldehyde</topic><topic>Genetic testing</topic><topic>Medical research</topic><topic>Medulloblastoma</topic><topic>Metastases</topic><topic>Methods</topic><topic>Paraffin</topic><topic>Subgroups</topic><topic>Tissues</topic><topic>Tumors</topic><topic>Wnt protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gómez, Soledad</creatorcontrib><creatorcontrib>Garrido-Garcia, Alícia</creatorcontrib><creatorcontrib>Garcia-Gerique, Laura</creatorcontrib><creatorcontrib>Lemos, Isadora</creatorcontrib><creatorcontrib>Suñol, Mariona</creatorcontrib><creatorcontrib>de Torres, Carmen</creatorcontrib><creatorcontrib>Kulis, Marta</creatorcontrib><creatorcontrib>Pérez-Jaume, Sara</creatorcontrib><creatorcontrib>Carcaboso, Ángel M</creatorcontrib><creatorcontrib>Luu, Betty</creatorcontrib><creatorcontrib>Kieran, Mark W</creatorcontrib><creatorcontrib>Jabado, Nada</creatorcontrib><creatorcontrib>Kozlenkov, Alexey</creatorcontrib><creatorcontrib>Dracheva, Stella</creatorcontrib><creatorcontrib>Ramaswamy, Vijay</creatorcontrib><creatorcontrib>Hovestadt, Volker</creatorcontrib><creatorcontrib>Johann, Pascal</creatorcontrib><creatorcontrib>Jones, David T W</creatorcontrib><creatorcontrib>Pfister, Stefan M</creatorcontrib><creatorcontrib>Morales La Madrid, Andrés</creatorcontrib><creatorcontrib>Cruz, Ofelia</creatorcontrib><creatorcontrib>Taylor, Michael D</creatorcontrib><creatorcontrib>Martin-Subero, Jose-Ignacio</creatorcontrib><creatorcontrib>Mora, Jaume</creatorcontrib><creatorcontrib>Lavarino, Cinzia</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Immunology Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Clinical cancer research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gómez, Soledad</au><au>Garrido-Garcia, Alícia</au><au>Garcia-Gerique, Laura</au><au>Lemos, Isadora</au><au>Suñol, Mariona</au><au>de Torres, Carmen</au><au>Kulis, Marta</au><au>Pérez-Jaume, Sara</au><au>Carcaboso, Ángel M</au><au>Luu, Betty</au><au>Kieran, Mark W</au><au>Jabado, Nada</au><au>Kozlenkov, Alexey</au><au>Dracheva, Stella</au><au>Ramaswamy, Vijay</au><au>Hovestadt, Volker</au><au>Johann, Pascal</au><au>Jones, David T W</au><au>Pfister, Stefan M</au><au>Morales La Madrid, Andrés</au><au>Cruz, Ofelia</au><au>Taylor, Michael D</au><au>Martin-Subero, Jose-Ignacio</au><au>Mora, Jaume</au><au>Lavarino, Cinzia</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma</atitle><jtitle>Clinical cancer research</jtitle><addtitle>Clin Cancer Res</addtitle><date>2018-03-15</date><risdate>2018</risdate><volume>24</volume><issue>6</issue><spage>1355</spage><epage>1363</epage><pages>1355-1363</pages><issn>1078-0432</issn><eissn>1557-3265</eissn><abstract>The classification of medulloblastoma into WNT, SHH, group 3, and group 4 subgroups has become of critical importance for patient risk stratification and subgroup-tailored clinical trials. Here, we aimed to develop a simplified, clinically applicable classification approach that can be implemented in the majority of centers treating patients with medulloblastoma. We analyzed 1,577 samples comprising previously published DNA methylation microarray data (913 medulloblastomas, 457 non-medulloblastoma tumors, 85 normal tissues), and 122 frozen and formalin-fixed paraffin-embedded medulloblastoma samples. Biomarkers were identified applying stringent selection filters and Linear Discriminant Analysis (LDA) method, and validated using DNA methylation microarray data, bisulfite pyrosequencing, and direct-bisulfite sequencing. Using a LDA-based approach, we developed and validated a prediction method ( WNT-SHH classifier) based on six epigenetic biomarkers that allowed for rapid classification of medulloblastoma into the clinically relevant subgroups WNT, SHH, and non-WNT/non-SHH with excellent concordance (&gt;99%) with current gold-standard methods, DNA methylation microarray, and gene signature profiling analysis. The WNT-SHH classifier showed high prediction capacity using both frozen and formalin-fixed material, as well as diverse DNA methylation detection methods. Similarly, we developed a classifier specific for group 3 and group 4 tumors, based on five biomarkers ( G3-G4) with good discriminatory capacity, allowing for correct assignment of more than 92% of tumors. WNT-SHH and G3-G4 methylation profiles remained stable across tumor primary, metastasis, and relapse samples. The WNT-SHH and G3-G4 classifiers represent a new simplified approach for accurate, rapid, and cost-effective molecular classification of single medulloblastoma DNA samples, using clinically applicable DNA methylation detection methods. .</abstract><cop>United States</cop><pub>American Association for Cancer Research Inc</pub><pmid>29351917</pmid><doi>10.1158/1078-0432.CCR-17-2243</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-0432
ispartof Clinical cancer research, 2018-03, Vol.24 (6), p.1355-1363
issn 1078-0432
1557-3265
language eng
recordid cdi_proquest_miscellaneous_1989598795
source American Association for Cancer Research; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Biomarkers
Bisulfite
Cancer
Classification
Classifiers
Clinical trials
Deoxyribonucleic acid
Discriminant analysis
DNA
DNA methylation
DNA microarrays
DNA sequencing
Experimental design
Formaldehyde
Genetic testing
Medical research
Medulloblastoma
Metastases
Methods
Paraffin
Subgroups
Tissues
Tumors
Wnt protein
title A Novel Method for Rapid Molecular Subgrouping of Medulloblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-20T16%3A00%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Novel%20Method%20for%20Rapid%20Molecular%20Subgrouping%20of%20Medulloblastoma&rft.jtitle=Clinical%20cancer%20research&rft.au=G%C3%B3mez,%20Soledad&rft.date=2018-03-15&rft.volume=24&rft.issue=6&rft.spage=1355&rft.epage=1363&rft.pages=1355-1363&rft.issn=1078-0432&rft.eissn=1557-3265&rft_id=info:doi/10.1158/1078-0432.CCR-17-2243&rft_dat=%3Cproquest_cross%3E1989598795%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2013695966&rft_id=info:pmid/29351917&rfr_iscdi=true