Structural basis of RNA polymerase III transcription initiation
RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TF...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2018-01, Vol.553 (7688), p.301-306 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 306 |
---|---|
container_issue | 7688 |
container_start_page | 301 |
container_title | Nature (London) |
container_volume | 553 |
creator | Abascal-Palacios, Guillermo Ramsay, Ewan Phillip Beuron, Fabienne Morris, Edward Vannini, Alessandro |
description | RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4–4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.
Detailed structures of yeast RNA polymerase III and its initiation complex shed light on how the transcription of essential non-coding RNAs begins and allow comparisons with other RNA polymerases.
Structures of RNA polymerase III pre-initiation complex
RNA polymerase III (Pol III) catalyses the transcription of short RNAs, including transfer RNAs and the 5S ribosomal RNA, which are essential for protein synthesis during cell growth. Pol III is predominantly regulated at the level of transcription initiation, and dysregulated Pol III activity is linked to diseases including cancer. Two independent studies in this issue, by Alessandro Vannini and colleagues and Christoph Müller and colleagues, describe electron cryo-microscopy structures of the yeast Pol III preinitiation complex, comprising the full 17-subunit Pol III and the three TFIIIB subunits (TBP, Brf1 and Bdp1) bound to promoter DNA in various functional states. The structures reveal the detailed mechanisms that underlie how Pol III is recruited to its target promoters and how promoter DNA is opened to form a stable transcription bubble, and also allow a comparison with the structures of Pol I and Pol II preinitiation complexes. |
doi_str_mv | 10.1038/nature25441 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989597354</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A523570898</galeid><sourcerecordid>A523570898</sourcerecordid><originalsourceid>FETCH-LOGICAL-c747t-328c66574ccccc5ac244f09c49bb21dfde18ec0376b5126da2033fe67e7bbadc3</originalsourceid><addsrcrecordid>eNqF089r1TAAB_Agins-PXmX4i6KduZ32pM8Hs4VxoRt4jGkafrIaNMuacH996Zuk77RufbQkHzyTdIkALxF8AhBkn1xahi9wYxS9AysEBU8pTwTz8EKQpylMCP8ALwK4QpCyJCgL8EBzgllnIgV-Hox-FHHANUkpQo2JF2dnJ9tkr5rblrjVTBJURTJ4JUL2tt-sJ1LrLODVVPxNXhRqyaYN3ffNfh5_O1ye5Ke_vhebDenqRZUDCnBmeacCaqnhymNKa1hrmlelhhVdWVQZjQkgpcMYV4pDAmpDRdGlKWqNFmDD7e5ve-uRxMG2dqgTdMoZ7oxSJRnOcsFYTTSwwf0qhu9i7P7qzLCMJqpnWqMtK7u4hL1FCo3nGCax9ny_yqGCRNwClyDdEHtjIv_r-mcqW2s3vPvF7zu7bWcD_0omicdLaD4Vqa1enHoj3sdohnM72GnxhBkcXG-v_in7Dz30-N2c_lre7af_LReyNa-C8GbWvbetsrfSATldAXk7ApE_e5u-8eyNdU_e3_mI_h8C0JscjvjZ-djIe8P2d8H-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989835214</pqid></control><display><type>article</type><title>Structural basis of RNA polymerase III transcription initiation</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><source>Nature Journals Online</source><creator>Abascal-Palacios, Guillermo ; Ramsay, Ewan Phillip ; Beuron, Fabienne ; Morris, Edward ; Vannini, Alessandro</creator><creatorcontrib>Abascal-Palacios, Guillermo ; Ramsay, Ewan Phillip ; Beuron, Fabienne ; Morris, Edward ; Vannini, Alessandro</creatorcontrib><description>RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4–4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.
Detailed structures of yeast RNA polymerase III and its initiation complex shed light on how the transcription of essential non-coding RNAs begins and allow comparisons with other RNA polymerases.
Structures of RNA polymerase III pre-initiation complex
RNA polymerase III (Pol III) catalyses the transcription of short RNAs, including transfer RNAs and the 5S ribosomal RNA, which are essential for protein synthesis during cell growth. Pol III is predominantly regulated at the level of transcription initiation, and dysregulated Pol III activity is linked to diseases including cancer. Two independent studies in this issue, by Alessandro Vannini and colleagues and Christoph Müller and colleagues, describe electron cryo-microscopy structures of the yeast Pol III preinitiation complex, comprising the full 17-subunit Pol III and the three TFIIIB subunits (TBP, Brf1 and Bdp1) bound to promoter DNA in various functional states. The structures reveal the detailed mechanisms that underlie how Pol III is recruited to its target promoters and how promoter DNA is opened to form a stable transcription bubble, and also allow a comparison with the structures of Pol I and Pol II preinitiation complexes.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature25441</identifier><identifier>PMID: 29345637</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>101/28 ; 631/337/1644 ; 631/337/572 ; 631/45/147 ; 631/45/500 ; 631/535/1258/1259 ; 82 ; 82/83 ; Analysis ; Cancer ; Chemical properties ; Cryoelectron Microscopy ; Deoxyribonucleic acid ; DNA ; DNA - chemistry ; DNA - metabolism ; DNA - ultrastructure ; DNA binding proteins ; DNA-directed RNA polymerase ; Electron microscopy ; Genes ; Genetic research ; Humanities and Social Sciences ; Models, Molecular ; Molecular modelling ; Molecular structure ; multidisciplinary ; Nucleic Acid Conformation ; Promoter Regions, Genetic ; Protein structure ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA Polymerase I - chemistry ; RNA polymerase II ; RNA Polymerase II - chemistry ; RNA Polymerase III - chemistry ; RNA Polymerase III - metabolism ; RNA Polymerase III - ultrastructure ; RNA polymerases ; rRNA 5S ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - ultrastructure ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - metabolism ; Saccharomyces cerevisiae Proteins - ultrastructure ; Science ; Structure ; Templates, Genetic ; Transcription (Genetics) ; Transcription Factor TFIIIB - chemistry ; Transcription Factor TFIIIB - metabolism ; Transcription Factor TFIIIB - ultrastructure ; Transcription Factors, TFII - chemistry ; Transcription Initiation, Genetic</subject><ispartof>Nature (London), 2018-01, Vol.553 (7688), p.301-306</ispartof><rights>Macmillan Publishers Limited, part of Springer Nature. All rights reserved. 2018</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 18, 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c747t-328c66574ccccc5ac244f09c49bb21dfde18ec0376b5126da2033fe67e7bbadc3</citedby><cites>FETCH-LOGICAL-c747t-328c66574ccccc5ac244f09c49bb21dfde18ec0376b5126da2033fe67e7bbadc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nature25441$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nature25441$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29345637$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Abascal-Palacios, Guillermo</creatorcontrib><creatorcontrib>Ramsay, Ewan Phillip</creatorcontrib><creatorcontrib>Beuron, Fabienne</creatorcontrib><creatorcontrib>Morris, Edward</creatorcontrib><creatorcontrib>Vannini, Alessandro</creatorcontrib><title>Structural basis of RNA polymerase III transcription initiation</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4–4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.
Detailed structures of yeast RNA polymerase III and its initiation complex shed light on how the transcription of essential non-coding RNAs begins and allow comparisons with other RNA polymerases.
Structures of RNA polymerase III pre-initiation complex
RNA polymerase III (Pol III) catalyses the transcription of short RNAs, including transfer RNAs and the 5S ribosomal RNA, which are essential for protein synthesis during cell growth. Pol III is predominantly regulated at the level of transcription initiation, and dysregulated Pol III activity is linked to diseases including cancer. Two independent studies in this issue, by Alessandro Vannini and colleagues and Christoph Müller and colleagues, describe electron cryo-microscopy structures of the yeast Pol III preinitiation complex, comprising the full 17-subunit Pol III and the three TFIIIB subunits (TBP, Brf1 and Bdp1) bound to promoter DNA in various functional states. The structures reveal the detailed mechanisms that underlie how Pol III is recruited to its target promoters and how promoter DNA is opened to form a stable transcription bubble, and also allow a comparison with the structures of Pol I and Pol II preinitiation complexes.</description><subject>101/28</subject><subject>631/337/1644</subject><subject>631/337/572</subject><subject>631/45/147</subject><subject>631/45/500</subject><subject>631/535/1258/1259</subject><subject>82</subject><subject>82/83</subject><subject>Analysis</subject><subject>Cancer</subject><subject>Chemical properties</subject><subject>Cryoelectron Microscopy</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA - ultrastructure</subject><subject>DNA binding proteins</subject><subject>DNA-directed RNA polymerase</subject><subject>Electron microscopy</subject><subject>Genes</subject><subject>Genetic research</subject><subject>Humanities and Social Sciences</subject><subject>Models, Molecular</subject><subject>Molecular modelling</subject><subject>Molecular structure</subject><subject>multidisciplinary</subject><subject>Nucleic Acid Conformation</subject><subject>Promoter Regions, Genetic</subject><subject>Protein structure</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA Polymerase I - chemistry</subject><subject>RNA polymerase II</subject><subject>RNA Polymerase II - chemistry</subject><subject>RNA Polymerase III - chemistry</subject><subject>RNA Polymerase III - metabolism</subject><subject>RNA Polymerase III - ultrastructure</subject><subject>RNA polymerases</subject><subject>rRNA 5S</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - ultrastructure</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - ultrastructure</subject><subject>Science</subject><subject>Structure</subject><subject>Templates, Genetic</subject><subject>Transcription (Genetics)</subject><subject>Transcription Factor TFIIIB - chemistry</subject><subject>Transcription Factor TFIIIB - metabolism</subject><subject>Transcription Factor TFIIIB - ultrastructure</subject><subject>Transcription Factors, TFII - chemistry</subject><subject>Transcription Initiation, Genetic</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqF089r1TAAB_Agins-PXmX4i6KduZ32pM8Hs4VxoRt4jGkafrIaNMuacH996Zuk77RufbQkHzyTdIkALxF8AhBkn1xahi9wYxS9AysEBU8pTwTz8EKQpylMCP8ALwK4QpCyJCgL8EBzgllnIgV-Hox-FHHANUkpQo2JF2dnJ9tkr5rblrjVTBJURTJ4JUL2tt-sJ1LrLODVVPxNXhRqyaYN3ffNfh5_O1ye5Ke_vhebDenqRZUDCnBmeacCaqnhymNKa1hrmlelhhVdWVQZjQkgpcMYV4pDAmpDRdGlKWqNFmDD7e5ve-uRxMG2dqgTdMoZ7oxSJRnOcsFYTTSwwf0qhu9i7P7qzLCMJqpnWqMtK7u4hL1FCo3nGCax9ny_yqGCRNwClyDdEHtjIv_r-mcqW2s3vPvF7zu7bWcD_0omicdLaD4Vqa1enHoj3sdohnM72GnxhBkcXG-v_in7Dz30-N2c_lre7af_LReyNa-C8GbWvbetsrfSATldAXk7ApE_e5u-8eyNdU_e3_mI_h8C0JscjvjZ-djIe8P2d8H-A</recordid><startdate>20180118</startdate><enddate>20180118</enddate><creator>Abascal-Palacios, Guillermo</creator><creator>Ramsay, Ewan Phillip</creator><creator>Beuron, Fabienne</creator><creator>Morris, Edward</creator><creator>Vannini, Alessandro</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope></search><sort><creationdate>20180118</creationdate><title>Structural basis of RNA polymerase III transcription initiation</title><author>Abascal-Palacios, Guillermo ; Ramsay, Ewan Phillip ; Beuron, Fabienne ; Morris, Edward ; Vannini, Alessandro</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c747t-328c66574ccccc5ac244f09c49bb21dfde18ec0376b5126da2033fe67e7bbadc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>101/28</topic><topic>631/337/1644</topic><topic>631/337/572</topic><topic>631/45/147</topic><topic>631/45/500</topic><topic>631/535/1258/1259</topic><topic>82</topic><topic>82/83</topic><topic>Analysis</topic><topic>Cancer</topic><topic>Chemical properties</topic><topic>Cryoelectron Microscopy</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA - ultrastructure</topic><topic>DNA binding proteins</topic><topic>DNA-directed RNA polymerase</topic><topic>Electron microscopy</topic><topic>Genes</topic><topic>Genetic research</topic><topic>Humanities and Social Sciences</topic><topic>Models, Molecular</topic><topic>Molecular modelling</topic><topic>Molecular structure</topic><topic>multidisciplinary</topic><topic>Nucleic Acid Conformation</topic><topic>Promoter Regions, Genetic</topic><topic>Protein structure</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA Polymerase I - chemistry</topic><topic>RNA polymerase II</topic><topic>RNA Polymerase II - chemistry</topic><topic>RNA Polymerase III - chemistry</topic><topic>RNA Polymerase III - metabolism</topic><topic>RNA Polymerase III - ultrastructure</topic><topic>RNA polymerases</topic><topic>rRNA 5S</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - ultrastructure</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - ultrastructure</topic><topic>Science</topic><topic>Structure</topic><topic>Templates, Genetic</topic><topic>Transcription (Genetics)</topic><topic>Transcription Factor TFIIIB - chemistry</topic><topic>Transcription Factor TFIIIB - metabolism</topic><topic>Transcription Factor TFIIIB - ultrastructure</topic><topic>Transcription Factors, TFII - chemistry</topic><topic>Transcription Initiation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Abascal-Palacios, Guillermo</creatorcontrib><creatorcontrib>Ramsay, Ewan Phillip</creatorcontrib><creatorcontrib>Beuron, Fabienne</creatorcontrib><creatorcontrib>Morris, Edward</creatorcontrib><creatorcontrib>Vannini, Alessandro</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Psychology Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Abascal-Palacios, Guillermo</au><au>Ramsay, Ewan Phillip</au><au>Beuron, Fabienne</au><au>Morris, Edward</au><au>Vannini, Alessandro</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural basis of RNA polymerase III transcription initiation</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2018-01-18</date><risdate>2018</risdate><volume>553</volume><issue>7688</issue><spage>301</spage><epage>306</epage><pages>301-306</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><abstract>RNA polymerase (Pol) III transcribes essential non-coding RNAs, including the entire pool of transfer RNAs, the 5S ribosomal RNA and the U6 spliceosomal RNA, and is often deregulated in cancer cells. The initiation of gene transcription by Pol III requires the activity of the transcription factor TFIIIB to form a transcriptionally active Pol III preinitiation complex (PIC). Here we present electron microscopy reconstructions of Pol III PICs at 3.4–4.0 Å and a reconstruction of unbound apo-Pol III at 3.1 Å. TFIIIB fully encircles the DNA and restructures Pol III. In particular, binding of the TFIIIB subunit Bdp1 rearranges the Pol III-specific subunits C37 and C34, thereby promoting DNA opening. The unwound DNA directly contacts both sides of the Pol III cleft. Topologically, the Pol III PIC resembles the Pol II PIC, whereas the Pol I PIC is more divergent. The structures presented unravel the molecular mechanisms underlying the first steps of Pol III transcription and also the general conserved mechanisms of gene transcription initiation.
Detailed structures of yeast RNA polymerase III and its initiation complex shed light on how the transcription of essential non-coding RNAs begins and allow comparisons with other RNA polymerases.
Structures of RNA polymerase III pre-initiation complex
RNA polymerase III (Pol III) catalyses the transcription of short RNAs, including transfer RNAs and the 5S ribosomal RNA, which are essential for protein synthesis during cell growth. Pol III is predominantly regulated at the level of transcription initiation, and dysregulated Pol III activity is linked to diseases including cancer. Two independent studies in this issue, by Alessandro Vannini and colleagues and Christoph Müller and colleagues, describe electron cryo-microscopy structures of the yeast Pol III preinitiation complex, comprising the full 17-subunit Pol III and the three TFIIIB subunits (TBP, Brf1 and Bdp1) bound to promoter DNA in various functional states. The structures reveal the detailed mechanisms that underlie how Pol III is recruited to its target promoters and how promoter DNA is opened to form a stable transcription bubble, and also allow a comparison with the structures of Pol I and Pol II preinitiation complexes.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29345637</pmid><doi>10.1038/nature25441</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2018-01, Vol.553 (7688), p.301-306 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989597354 |
source | MEDLINE; Springer Online Journals Complete; Nature Journals Online |
subjects | 101/28 631/337/1644 631/337/572 631/45/147 631/45/500 631/535/1258/1259 82 82/83 Analysis Cancer Chemical properties Cryoelectron Microscopy Deoxyribonucleic acid DNA DNA - chemistry DNA - metabolism DNA - ultrastructure DNA binding proteins DNA-directed RNA polymerase Electron microscopy Genes Genetic research Humanities and Social Sciences Models, Molecular Molecular modelling Molecular structure multidisciplinary Nucleic Acid Conformation Promoter Regions, Genetic Protein structure Protein Subunits - chemistry Protein Subunits - metabolism Ribonucleic acid RNA RNA polymerase RNA Polymerase I - chemistry RNA polymerase II RNA Polymerase II - chemistry RNA Polymerase III - chemistry RNA Polymerase III - metabolism RNA Polymerase III - ultrastructure RNA polymerases rRNA 5S Saccharomyces cerevisiae - chemistry Saccharomyces cerevisiae - ultrastructure Saccharomyces cerevisiae Proteins - chemistry Saccharomyces cerevisiae Proteins - metabolism Saccharomyces cerevisiae Proteins - ultrastructure Science Structure Templates, Genetic Transcription (Genetics) Transcription Factor TFIIIB - chemistry Transcription Factor TFIIIB - metabolism Transcription Factor TFIIIB - ultrastructure Transcription Factors, TFII - chemistry Transcription Initiation, Genetic |
title | Structural basis of RNA polymerase III transcription initiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T14%3A51%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20basis%20of%20RNA%20polymerase%20III%20transcription%20initiation&rft.jtitle=Nature%20(London)&rft.au=Abascal-Palacios,%20Guillermo&rft.date=2018-01-18&rft.volume=553&rft.issue=7688&rft.spage=301&rft.epage=306&rft.pages=301-306&rft.issn=0028-0836&rft.eissn=1476-4687&rft_id=info:doi/10.1038/nature25441&rft_dat=%3Cgale_proqu%3EA523570898%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989835214&rft_id=info:pmid/29345637&rft_galeid=A523570898&rfr_iscdi=true |