Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain
In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mat...
Gespeichert in:
Veröffentlicht in: | Bulletin of mathematical biology 2018-03, Vol.80 (3), p.583-597 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 597 |
---|---|
container_issue | 3 |
container_start_page | 583 |
container_title | Bulletin of mathematical biology |
container_volume | 80 |
creator | Lee, Seunggyu |
description | In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model. |
doi_str_mv | 10.1007/s11538-018-0390-x |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989596385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989596385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVIabZpf0AuxZBLL2pH0o6tOYbdfkFCoaT0KLS2lCi1pUTyluTfV8smoRR6EHPQ874zPIydCHgvALoPRQhUmoOoTxHw-wO2ECglpxbkIVsAkORaLuGIvSrlBmqGFL1kR5LUctkhLdjPCztfu8nOobdjc5EGNzbJN6sU52z7OYyu-R7iFV_n8NvFZvUwp18huhJKE2Jjm8vr7Bxfh8nFElKsHes02RBfsxfejsW9eZzH7Menj5erL_z82-evq7Nz3qtOzhwF4tDTQHbwSJ3YSAnoBvSAsMFOeaG7VreoyRM4r9EPetMKKTVokqDUMXu3773N6W7rymymUHo3jja6tC1GkCakVmms6Ok_6E3a5nryjiIlWgRsKyX2VJ9TKdl5c5vDZPODEWB21s3euqnWzc66ua-Zt4_N283khufEk-YKyD1Q6le8cvmv1f9t_QMl1Yud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993165056</pqid></control><display><type>article</type><title>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Seunggyu</creator><creatorcontrib>Lee, Seunggyu</creatorcontrib><description>In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-018-0390-x</identifier><identifier>PMID: 29344759</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cell Biology ; Computer simulation ; Contractility ; Cytokinesis ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Molecular structure ; Original Article ; Splitting ; Three dimensional models</subject><ispartof>Bulletin of mathematical biology, 2018-03, Vol.80 (3), p.583-597</ispartof><rights>Society for Mathematical Biology 2018</rights><rights>Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</citedby><cites>FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-018-0390-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-018-0390-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29344759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seunggyu</creatorcontrib><title>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.</description><subject>Cell Biology</subject><subject>Computer simulation</subject><subject>Contractility</subject><subject>Cytokinesis</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Molecular structure</subject><subject>Original Article</subject><subject>Splitting</subject><subject>Three dimensional models</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1r3DAQhkVIabZpf0AuxZBLL2pH0o6tOYbdfkFCoaT0KLS2lCi1pUTyluTfV8smoRR6EHPQ874zPIydCHgvALoPRQhUmoOoTxHw-wO2ECglpxbkIVsAkORaLuGIvSrlBmqGFL1kR5LUctkhLdjPCztfu8nOobdjc5EGNzbJN6sU52z7OYyu-R7iFV_n8NvFZvUwp18huhJKE2Jjm8vr7Bxfh8nFElKsHes02RBfsxfejsW9eZzH7Menj5erL_z82-evq7Nz3qtOzhwF4tDTQHbwSJ3YSAnoBvSAsMFOeaG7VreoyRM4r9EPetMKKTVokqDUMXu3773N6W7rymymUHo3jja6tC1GkCakVmms6Ok_6E3a5nryjiIlWgRsKyX2VJ9TKdl5c5vDZPODEWB21s3euqnWzc66ua-Zt4_N283khufEk-YKyD1Q6le8cvmv1f9t_QMl1Yud</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Lee, Seunggyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20180301</creationdate><title>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</title><author>Lee, Seunggyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cell Biology</topic><topic>Computer simulation</topic><topic>Contractility</topic><topic>Cytokinesis</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Molecular structure</topic><topic>Original Article</topic><topic>Splitting</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seunggyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seunggyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>80</volume><issue>3</issue><spage>583</spage><epage>597</epage><pages>583-597</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29344759</pmid><doi>10.1007/s11538-018-0390-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0092-8240 |
ispartof | Bulletin of mathematical biology, 2018-03, Vol.80 (3), p.583-597 |
issn | 0092-8240 1522-9602 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989596385 |
source | SpringerLink Journals - AutoHoldings |
subjects | Cell Biology Computer simulation Contractility Cytokinesis Life Sciences Mathematical analysis Mathematical and Computational Biology Mathematical models Mathematics Mathematics and Statistics Molecular structure Original Article Splitting Three dimensional models |
title | Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model%20of%20Contractile%20Ring-Driven%20Cytokinesis%20in%20a%20Three-Dimensional%20Domain&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Lee,%20Seunggyu&rft.date=2018-03-01&rft.volume=80&rft.issue=3&rft.spage=583&rft.epage=597&rft.pages=583-597&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-018-0390-x&rft_dat=%3Cproquest_cross%3E1989596385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993165056&rft_id=info:pmid/29344759&rfr_iscdi=true |