Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain

In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of mathematical biology 2018-03, Vol.80 (3), p.583-597
1. Verfasser: Lee, Seunggyu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 597
container_issue 3
container_start_page 583
container_title Bulletin of mathematical biology
container_volume 80
creator Lee, Seunggyu
description In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.
doi_str_mv 10.1007/s11538-018-0390-x
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989596385</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989596385</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</originalsourceid><addsrcrecordid>eNp1kE1r3DAQhkVIabZpf0AuxZBLL2pH0o6tOYbdfkFCoaT0KLS2lCi1pUTyluTfV8smoRR6EHPQ874zPIydCHgvALoPRQhUmoOoTxHw-wO2ECglpxbkIVsAkORaLuGIvSrlBmqGFL1kR5LUctkhLdjPCztfu8nOobdjc5EGNzbJN6sU52z7OYyu-R7iFV_n8NvFZvUwp18huhJKE2Jjm8vr7Bxfh8nFElKsHes02RBfsxfejsW9eZzH7Menj5erL_z82-evq7Nz3qtOzhwF4tDTQHbwSJ3YSAnoBvSAsMFOeaG7VreoyRM4r9EPetMKKTVokqDUMXu3773N6W7rymymUHo3jja6tC1GkCakVmms6Ok_6E3a5nryjiIlWgRsKyX2VJ9TKdl5c5vDZPODEWB21s3euqnWzc66ua-Zt4_N283khufEk-YKyD1Q6le8cvmv1f9t_QMl1Yud</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1993165056</pqid></control><display><type>article</type><title>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</title><source>SpringerLink Journals - AutoHoldings</source><creator>Lee, Seunggyu</creator><creatorcontrib>Lee, Seunggyu</creatorcontrib><description>In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.</description><identifier>ISSN: 0092-8240</identifier><identifier>EISSN: 1522-9602</identifier><identifier>DOI: 10.1007/s11538-018-0390-x</identifier><identifier>PMID: 29344759</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Cell Biology ; Computer simulation ; Contractility ; Cytokinesis ; Life Sciences ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Molecular structure ; Original Article ; Splitting ; Three dimensional models</subject><ispartof>Bulletin of mathematical biology, 2018-03, Vol.80 (3), p.583-597</ispartof><rights>Society for Mathematical Biology 2018</rights><rights>Bulletin of Mathematical Biology is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</citedby><cites>FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11538-018-0390-x$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11538-018-0390-x$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29344759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lee, Seunggyu</creatorcontrib><title>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</title><title>Bulletin of mathematical biology</title><addtitle>Bull Math Biol</addtitle><addtitle>Bull Math Biol</addtitle><description>In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.</description><subject>Cell Biology</subject><subject>Computer simulation</subject><subject>Contractility</subject><subject>Cytokinesis</subject><subject>Life Sciences</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Molecular structure</subject><subject>Original Article</subject><subject>Splitting</subject><subject>Three dimensional models</subject><issn>0092-8240</issn><issn>1522-9602</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kE1r3DAQhkVIabZpf0AuxZBLL2pH0o6tOYbdfkFCoaT0KLS2lCi1pUTyluTfV8smoRR6EHPQ874zPIydCHgvALoPRQhUmoOoTxHw-wO2ECglpxbkIVsAkORaLuGIvSrlBmqGFL1kR5LUctkhLdjPCztfu8nOobdjc5EGNzbJN6sU52z7OYyu-R7iFV_n8NvFZvUwp18huhJKE2Jjm8vr7Bxfh8nFElKsHes02RBfsxfejsW9eZzH7Menj5erL_z82-evq7Nz3qtOzhwF4tDTQHbwSJ3YSAnoBvSAsMFOeaG7VreoyRM4r9EPetMKKTVokqDUMXu3773N6W7rymymUHo3jja6tC1GkCakVmms6Ok_6E3a5nryjiIlWgRsKyX2VJ9TKdl5c5vDZPODEWB21s3euqnWzc66ua-Zt4_N283khufEk-YKyD1Q6le8cvmv1f9t_QMl1Yud</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Lee, Seunggyu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SS</scope><scope>7TK</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20180301</creationdate><title>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</title><author>Lee, Seunggyu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-5155dc9d9adf5971b2205ed5f050b573f187686589f90ef85fd8b612280892033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Cell Biology</topic><topic>Computer simulation</topic><topic>Contractility</topic><topic>Cytokinesis</topic><topic>Life Sciences</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Molecular structure</topic><topic>Original Article</topic><topic>Splitting</topic><topic>Three dimensional models</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lee, Seunggyu</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Bulletin of mathematical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lee, Seunggyu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain</atitle><jtitle>Bulletin of mathematical biology</jtitle><stitle>Bull Math Biol</stitle><addtitle>Bull Math Biol</addtitle><date>2018-03-01</date><risdate>2018</risdate><volume>80</volume><issue>3</issue><spage>583</spage><epage>597</epage><pages>583-597</pages><issn>0092-8240</issn><eissn>1522-9602</eissn><abstract>In this paper, a mathematical model of contractile ring-driven cytokinesis is presented by using both phase-field and immersed-boundary methods in a three-dimensional domain. It is one of the powerful hypotheses that cytokinesis happens driven by the contractile ring; however, there are only few mathematical models following the hypothesis, to the author’s knowledge. I consider a hybrid method to model the phenomenon. First, a cell membrane is represented by a zero-contour of a phase-field implicitly because of its topological change. Otherwise, immersed-boundary particles represent a contractile ring explicitly based on the author’s previous work. Here, the multi-component (or vector-valued) phase-field equation is considered to avoid the emerging of each cell membrane right after their divisions. Using a convex splitting scheme, the governing equation of the phase-field method has unique solvability. The numerical convergence of contractile ring to cell membrane is proved. Several numerical simulations are performed to validate the proposed model.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29344759</pmid><doi>10.1007/s11538-018-0390-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0092-8240
ispartof Bulletin of mathematical biology, 2018-03, Vol.80 (3), p.583-597
issn 0092-8240
1522-9602
language eng
recordid cdi_proquest_miscellaneous_1989596385
source SpringerLink Journals - AutoHoldings
subjects Cell Biology
Computer simulation
Contractility
Cytokinesis
Life Sciences
Mathematical analysis
Mathematical and Computational Biology
Mathematical models
Mathematics
Mathematics and Statistics
Molecular structure
Original Article
Splitting
Three dimensional models
title Mathematical Model of Contractile Ring-Driven Cytokinesis in a Three-Dimensional Domain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T19%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mathematical%20Model%20of%20Contractile%20Ring-Driven%20Cytokinesis%20in%20a%20Three-Dimensional%20Domain&rft.jtitle=Bulletin%20of%20mathematical%20biology&rft.au=Lee,%20Seunggyu&rft.date=2018-03-01&rft.volume=80&rft.issue=3&rft.spage=583&rft.epage=597&rft.pages=583-597&rft.issn=0092-8240&rft.eissn=1522-9602&rft_id=info:doi/10.1007/s11538-018-0390-x&rft_dat=%3Cproquest_cross%3E1989596385%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1993165056&rft_id=info:pmid/29344759&rfr_iscdi=true