Thermal conductivity of suspended few-layer MoS2
Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this w...
Gespeichert in:
Veröffentlicht in: | Nanoscale 2018-02, Vol.10 (6), p.2727-2734 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2734 |
---|---|
container_issue | 6 |
container_start_page | 2727 |
container_title | Nanoscale |
container_volume | 10 |
creator | Aiyiti, Adili Hu, Shiqian Wang, Chengru Xi, Qing Cheng, Zhaofang Xia, Minggang Ma, Yanling Wu, Jianbo Guo, Jie Wang, Qilang Zhou, Jun Chen, Jie Xu, Xiangfan Li, Baowen |
description | Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization. |
doi_str_mv | 10.1039/c7nr07522g |
format | Article |
fullrecord | <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989581904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010881073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-d357d5a9c8ee158e3422f841f5c2efe80a2195eeda0a6c2ed018b7d5e8c88cae3</originalsourceid><addsrcrecordid>eNpdjkFLxDAUhIMouK5e_AUFL16qL3lN-3KURVdhxYPrucTkRbt0m7Vplf33FhQPnmYYvhlGiHMJVxLQXLuq66HSSr0diJmCAnLESh3--bI4FicpbQBKgyXOBKzfud_aNnOx86Mbms9m2GcxZGlMO-48-yzwV97aPffZY3xWp-Io2Dbx2a_Oxcvd7Xpxn6-elg-Lm1XuUOGQe9SV19Y4YpaaGAulAhUyaKc4MIFV0mhmb8GWU-RB0uvUYHJEzjLOxeXP7q6PHyOnod42yXHb2o7jmGppyGiSBooJvfiHbuLYd9O7WoEEIgkV4jcdzlMz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010881073</pqid></control><display><type>article</type><title>Thermal conductivity of suspended few-layer MoS2</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Aiyiti, Adili ; Hu, Shiqian ; Wang, Chengru ; Xi, Qing ; Cheng, Zhaofang ; Xia, Minggang ; Ma, Yanling ; Wu, Jianbo ; Guo, Jie ; Wang, Qilang ; Zhou, Jun ; Chen, Jie ; Xu, Xiangfan ; Li, Baowen</creator><creatorcontrib>Aiyiti, Adili ; Hu, Shiqian ; Wang, Chengru ; Xi, Qing ; Cheng, Zhaofang ; Xia, Minggang ; Ma, Yanling ; Wu, Jianbo ; Guo, Jie ; Wang, Qilang ; Zhou, Jun ; Chen, Jie ; Xu, Xiangfan ; Li, Baowen</creatorcontrib><description>Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c7nr07522g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal structure ; Crystallinity ; Energy harvesting ; Energy management ; Heat conductivity ; Heat transfer ; Miniaturization ; Molybdenum disulfide ; Nanomaterials ; Thermal conductivity ; Thermal management</subject><ispartof>Nanoscale, 2018-02, Vol.10 (6), p.2727-2734</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-d357d5a9c8ee158e3422f841f5c2efe80a2195eeda0a6c2ed018b7d5e8c88cae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aiyiti, Adili</creatorcontrib><creatorcontrib>Hu, Shiqian</creatorcontrib><creatorcontrib>Wang, Chengru</creatorcontrib><creatorcontrib>Xi, Qing</creatorcontrib><creatorcontrib>Cheng, Zhaofang</creatorcontrib><creatorcontrib>Xia, Minggang</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Wang, Qilang</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Xu, Xiangfan</creatorcontrib><creatorcontrib>Li, Baowen</creatorcontrib><title>Thermal conductivity of suspended few-layer MoS2</title><title>Nanoscale</title><description>Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.</description><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Energy harvesting</subject><subject>Energy management</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Miniaturization</subject><subject>Molybdenum disulfide</subject><subject>Nanomaterials</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLxDAUhIMouK5e_AUFL16qL3lN-3KURVdhxYPrucTkRbt0m7Vplf33FhQPnmYYvhlGiHMJVxLQXLuq66HSSr0diJmCAnLESh3--bI4FicpbQBKgyXOBKzfud_aNnOx86Mbms9m2GcxZGlMO-48-yzwV97aPffZY3xWp-Io2Dbx2a_Oxcvd7Xpxn6-elg-Lm1XuUOGQe9SV19Y4YpaaGAulAhUyaKc4MIFV0mhmb8GWU-RB0uvUYHJEzjLOxeXP7q6PHyOnod42yXHb2o7jmGppyGiSBooJvfiHbuLYd9O7WoEEIgkV4jcdzlMz</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Aiyiti, Adili</creator><creator>Hu, Shiqian</creator><creator>Wang, Chengru</creator><creator>Xi, Qing</creator><creator>Cheng, Zhaofang</creator><creator>Xia, Minggang</creator><creator>Ma, Yanling</creator><creator>Wu, Jianbo</creator><creator>Guo, Jie</creator><creator>Wang, Qilang</creator><creator>Zhou, Jun</creator><creator>Chen, Jie</creator><creator>Xu, Xiangfan</creator><creator>Li, Baowen</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180214</creationdate><title>Thermal conductivity of suspended few-layer MoS2</title><author>Aiyiti, Adili ; Hu, Shiqian ; Wang, Chengru ; Xi, Qing ; Cheng, Zhaofang ; Xia, Minggang ; Ma, Yanling ; Wu, Jianbo ; Guo, Jie ; Wang, Qilang ; Zhou, Jun ; Chen, Jie ; Xu, Xiangfan ; Li, Baowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-d357d5a9c8ee158e3422f841f5c2efe80a2195eeda0a6c2ed018b7d5e8c88cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Energy harvesting</topic><topic>Energy management</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Miniaturization</topic><topic>Molybdenum disulfide</topic><topic>Nanomaterials</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aiyiti, Adili</creatorcontrib><creatorcontrib>Hu, Shiqian</creatorcontrib><creatorcontrib>Wang, Chengru</creatorcontrib><creatorcontrib>Xi, Qing</creatorcontrib><creatorcontrib>Cheng, Zhaofang</creatorcontrib><creatorcontrib>Xia, Minggang</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Wang, Qilang</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Xu, Xiangfan</creatorcontrib><creatorcontrib>Li, Baowen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aiyiti, Adili</au><au>Hu, Shiqian</au><au>Wang, Chengru</au><au>Xi, Qing</au><au>Cheng, Zhaofang</au><au>Xia, Minggang</au><au>Ma, Yanling</au><au>Wu, Jianbo</au><au>Guo, Jie</au><au>Wang, Qilang</au><au>Zhou, Jun</au><au>Chen, Jie</au><au>Xu, Xiangfan</au><au>Li, Baowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of suspended few-layer MoS2</atitle><jtitle>Nanoscale</jtitle><date>2018-02-14</date><risdate>2018</risdate><volume>10</volume><issue>6</issue><spage>2727</spage><epage>2734</epage><pages>2727-2734</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7nr07522g</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2040-3364 |
ispartof | Nanoscale, 2018-02, Vol.10 (6), p.2727-2734 |
issn | 2040-3364 2040-3372 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989581904 |
source | Royal Society Of Chemistry Journals 2008- |
subjects | Crystal structure Crystallinity Energy harvesting Energy management Heat conductivity Heat transfer Miniaturization Molybdenum disulfide Nanomaterials Thermal conductivity Thermal management |
title | Thermal conductivity of suspended few-layer MoS2 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20suspended%20few-layer%20MoS2&rft.jtitle=Nanoscale&rft.au=Aiyiti,%20Adili&rft.date=2018-02-14&rft.volume=10&rft.issue=6&rft.spage=2727&rft.epage=2734&rft.pages=2727-2734&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c7nr07522g&rft_dat=%3Cproquest%3E2010881073%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010881073&rft_id=info:pmid/&rfr_iscdi=true |