Thermal conductivity of suspended few-layer MoS2

Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this w...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nanoscale 2018-02, Vol.10 (6), p.2727-2734
Hauptverfasser: Aiyiti, Adili, Hu, Shiqian, Wang, Chengru, Xi, Qing, Cheng, Zhaofang, Xia, Minggang, Ma, Yanling, Wu, Jianbo, Guo, Jie, Wang, Qilang, Zhou, Jun, Chen, Jie, Xu, Xiangfan, Li, Baowen
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2734
container_issue 6
container_start_page 2727
container_title Nanoscale
container_volume 10
creator Aiyiti, Adili
Hu, Shiqian
Wang, Chengru
Xi, Qing
Cheng, Zhaofang
Xia, Minggang
Ma, Yanling
Wu, Jianbo
Guo, Jie
Wang, Qilang
Zhou, Jun
Chen, Jie
Xu, Xiangfan
Li, Baowen
description Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.
doi_str_mv 10.1039/c7nr07522g
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989581904</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2010881073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c323t-d357d5a9c8ee158e3422f841f5c2efe80a2195eeda0a6c2ed018b7d5e8c88cae3</originalsourceid><addsrcrecordid>eNpdjkFLxDAUhIMouK5e_AUFL16qL3lN-3KURVdhxYPrucTkRbt0m7Vplf33FhQPnmYYvhlGiHMJVxLQXLuq66HSSr0diJmCAnLESh3--bI4FicpbQBKgyXOBKzfud_aNnOx86Mbms9m2GcxZGlMO-48-yzwV97aPffZY3xWp-Io2Dbx2a_Oxcvd7Xpxn6-elg-Lm1XuUOGQe9SV19Y4YpaaGAulAhUyaKc4MIFV0mhmb8GWU-RB0uvUYHJEzjLOxeXP7q6PHyOnod42yXHb2o7jmGppyGiSBooJvfiHbuLYd9O7WoEEIgkV4jcdzlMz</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2010881073</pqid></control><display><type>article</type><title>Thermal conductivity of suspended few-layer MoS2</title><source>Royal Society Of Chemistry Journals 2008-</source><creator>Aiyiti, Adili ; Hu, Shiqian ; Wang, Chengru ; Xi, Qing ; Cheng, Zhaofang ; Xia, Minggang ; Ma, Yanling ; Wu, Jianbo ; Guo, Jie ; Wang, Qilang ; Zhou, Jun ; Chen, Jie ; Xu, Xiangfan ; Li, Baowen</creator><creatorcontrib>Aiyiti, Adili ; Hu, Shiqian ; Wang, Chengru ; Xi, Qing ; Cheng, Zhaofang ; Xia, Minggang ; Ma, Yanling ; Wu, Jianbo ; Guo, Jie ; Wang, Qilang ; Zhou, Jun ; Chen, Jie ; Xu, Xiangfan ; Li, Baowen</creatorcontrib><description>Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.</description><identifier>ISSN: 2040-3364</identifier><identifier>EISSN: 2040-3372</identifier><identifier>DOI: 10.1039/c7nr07522g</identifier><language>eng</language><publisher>Cambridge: Royal Society of Chemistry</publisher><subject>Crystal structure ; Crystallinity ; Energy harvesting ; Energy management ; Heat conductivity ; Heat transfer ; Miniaturization ; Molybdenum disulfide ; Nanomaterials ; Thermal conductivity ; Thermal management</subject><ispartof>Nanoscale, 2018-02, Vol.10 (6), p.2727-2734</ispartof><rights>Copyright Royal Society of Chemistry 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c323t-d357d5a9c8ee158e3422f841f5c2efe80a2195eeda0a6c2ed018b7d5e8c88cae3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Aiyiti, Adili</creatorcontrib><creatorcontrib>Hu, Shiqian</creatorcontrib><creatorcontrib>Wang, Chengru</creatorcontrib><creatorcontrib>Xi, Qing</creatorcontrib><creatorcontrib>Cheng, Zhaofang</creatorcontrib><creatorcontrib>Xia, Minggang</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Wang, Qilang</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Xu, Xiangfan</creatorcontrib><creatorcontrib>Li, Baowen</creatorcontrib><title>Thermal conductivity of suspended few-layer MoS2</title><title>Nanoscale</title><description>Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.</description><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Energy harvesting</subject><subject>Energy management</subject><subject>Heat conductivity</subject><subject>Heat transfer</subject><subject>Miniaturization</subject><subject>Molybdenum disulfide</subject><subject>Nanomaterials</subject><subject>Thermal conductivity</subject><subject>Thermal management</subject><issn>2040-3364</issn><issn>2040-3372</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNpdjkFLxDAUhIMouK5e_AUFL16qL3lN-3KURVdhxYPrucTkRbt0m7Vplf33FhQPnmYYvhlGiHMJVxLQXLuq66HSSr0diJmCAnLESh3--bI4FicpbQBKgyXOBKzfud_aNnOx86Mbms9m2GcxZGlMO-48-yzwV97aPffZY3xWp-Io2Dbx2a_Oxcvd7Xpxn6-elg-Lm1XuUOGQe9SV19Y4YpaaGAulAhUyaKc4MIFV0mhmb8GWU-RB0uvUYHJEzjLOxeXP7q6PHyOnod42yXHb2o7jmGppyGiSBooJvfiHbuLYd9O7WoEEIgkV4jcdzlMz</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Aiyiti, Adili</creator><creator>Hu, Shiqian</creator><creator>Wang, Chengru</creator><creator>Xi, Qing</creator><creator>Cheng, Zhaofang</creator><creator>Xia, Minggang</creator><creator>Ma, Yanling</creator><creator>Wu, Jianbo</creator><creator>Guo, Jie</creator><creator>Wang, Qilang</creator><creator>Zhou, Jun</creator><creator>Chen, Jie</creator><creator>Xu, Xiangfan</creator><creator>Li, Baowen</creator><general>Royal Society of Chemistry</general><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>20180214</creationdate><title>Thermal conductivity of suspended few-layer MoS2</title><author>Aiyiti, Adili ; Hu, Shiqian ; Wang, Chengru ; Xi, Qing ; Cheng, Zhaofang ; Xia, Minggang ; Ma, Yanling ; Wu, Jianbo ; Guo, Jie ; Wang, Qilang ; Zhou, Jun ; Chen, Jie ; Xu, Xiangfan ; Li, Baowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c323t-d357d5a9c8ee158e3422f841f5c2efe80a2195eeda0a6c2ed018b7d5e8c88cae3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Energy harvesting</topic><topic>Energy management</topic><topic>Heat conductivity</topic><topic>Heat transfer</topic><topic>Miniaturization</topic><topic>Molybdenum disulfide</topic><topic>Nanomaterials</topic><topic>Thermal conductivity</topic><topic>Thermal management</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aiyiti, Adili</creatorcontrib><creatorcontrib>Hu, Shiqian</creatorcontrib><creatorcontrib>Wang, Chengru</creatorcontrib><creatorcontrib>Xi, Qing</creatorcontrib><creatorcontrib>Cheng, Zhaofang</creatorcontrib><creatorcontrib>Xia, Minggang</creatorcontrib><creatorcontrib>Ma, Yanling</creatorcontrib><creatorcontrib>Wu, Jianbo</creatorcontrib><creatorcontrib>Guo, Jie</creatorcontrib><creatorcontrib>Wang, Qilang</creatorcontrib><creatorcontrib>Zhou, Jun</creatorcontrib><creatorcontrib>Chen, Jie</creatorcontrib><creatorcontrib>Xu, Xiangfan</creatorcontrib><creatorcontrib>Li, Baowen</creatorcontrib><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Nanoscale</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aiyiti, Adili</au><au>Hu, Shiqian</au><au>Wang, Chengru</au><au>Xi, Qing</au><au>Cheng, Zhaofang</au><au>Xia, Minggang</au><au>Ma, Yanling</au><au>Wu, Jianbo</au><au>Guo, Jie</au><au>Wang, Qilang</au><au>Zhou, Jun</au><au>Chen, Jie</au><au>Xu, Xiangfan</au><au>Li, Baowen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal conductivity of suspended few-layer MoS2</atitle><jtitle>Nanoscale</jtitle><date>2018-02-14</date><risdate>2018</risdate><volume>10</volume><issue>6</issue><spage>2727</spage><epage>2734</epage><pages>2727-2734</pages><issn>2040-3364</issn><eissn>2040-3372</eissn><abstract>Modifying phonon thermal conductivity in nanomaterials is important not only for fundamental research but also for practical applications. However, the experiments on tailoring thermal conductivity in nanoscale, especially in two-dimensional materials, are rare due to technical challenges. In this work, we demonstrate the in situ thermal conduction measurement of MoS2 and find that its thermal conductivity can be continuously tuned to a required value from crystalline to amorphous limits. The reduction of thermal conductivity is understood from phonon-defect scattering that decreases the phonon transmission coefficient. Beyond a threshold, a sharp drop in thermal conductivity is observed, which is believed to be due to a crystalline–amorphous transition. Our method and results provide guidance for potential applications in thermoelectrics, photoelectronics, and energy harvesting where thermal management is critical with further integration and miniaturization.</abstract><cop>Cambridge</cop><pub>Royal Society of Chemistry</pub><doi>10.1039/c7nr07522g</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 2040-3364
ispartof Nanoscale, 2018-02, Vol.10 (6), p.2727-2734
issn 2040-3364
2040-3372
language eng
recordid cdi_proquest_miscellaneous_1989581904
source Royal Society Of Chemistry Journals 2008-
subjects Crystal structure
Crystallinity
Energy harvesting
Energy management
Heat conductivity
Heat transfer
Miniaturization
Molybdenum disulfide
Nanomaterials
Thermal conductivity
Thermal management
title Thermal conductivity of suspended few-layer MoS2
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A57%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20conductivity%20of%20suspended%20few-layer%20MoS2&rft.jtitle=Nanoscale&rft.au=Aiyiti,%20Adili&rft.date=2018-02-14&rft.volume=10&rft.issue=6&rft.spage=2727&rft.epage=2734&rft.pages=2727-2734&rft.issn=2040-3364&rft.eissn=2040-3372&rft_id=info:doi/10.1039/c7nr07522g&rft_dat=%3Cproquest%3E2010881073%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2010881073&rft_id=info:pmid/&rfr_iscdi=true