Fixation and absorption in a fluctuating environment

•Analyzing the fate of a new mutant/invader introduced into a fixed size population.•Incorporating fluctuating environment, selection and drift.•Using a generic model with telegraphic noise, we calculated the chance of fixation.•Formulas are given for the time to fixation and the time to absorption....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical biology 2018-03, Vol.441, p.84-92
Hauptverfasser: Danino, Matan, Shnerb, Nadav M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 92
container_issue
container_start_page 84
container_title Journal of theoretical biology
container_volume 441
creator Danino, Matan
Shnerb, Nadav M.
description •Analyzing the fate of a new mutant/invader introduced into a fixed size population.•Incorporating fluctuating environment, selection and drift.•Using a generic model with telegraphic noise, we calculated the chance of fixation.•Formulas are given for the time to fixation and the time to absorption. A fundamental problem in the fields of population genetics, evolution, and community ecology, is the fate of a single mutant, or invader, introduced in a finite population of wild types. For a fixed-size community of N individuals, with Markovian, zero-sum dynamics driven by stochastic birth-death events, the mutant population eventually reaches either fixation or extinction. The classical analysis, provided by Kimura and his coworkers, is focused on the neutral case, [where the dynamics is only due to demographic stochasticity (drift)], and on time-independent selective forces (deleterious/beneficial mutation). However, both theoretical arguments and empirical analyses suggest that in many cases the selective forces fluctuate in time (temporal environmental stochasticity). Here we consider a generic model for a system with demographic noise and fluctuating selection. Our system is characterized by the time-averaged (log)-fitness s0 and zero-mean fitness fluctuations. These fluctuations, in turn, are parameterized by their amplitude γ and their correlation time δ. We provide asymptotic (large N) formulas for the chance of fixation, the mean time to fixation and the mean time to absorption. Our expressions interpolate correctly between the constant selection limit γ → 0 and the time-averaged neutral case s0=0.
doi_str_mv 10.1016/j.jtbi.2018.01.004
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989578417</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022519318300043</els_id><sourcerecordid>1989578417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-77d3eb68b044cbf8843dc0f4d7424d1d43a1fc274339d60b61127ce23b5f2b083</originalsourceid><addsrcrecordid>eNp9kE1PwzAMhiMEYmPwBzigHbm02EnapBIXNDFAmsQFzlHzUZSqHyNpJ_j3dAw4crJsP34lP4RcIqQImN_UaT1on1JAmQKmAPyIzBGKLJEZx2MyB6A0ybBgM3IWYw0ABWf5KZnRgjGATMwJX_uPcvB9tyw7uyx17MP2u_XTZFk1oxnGad-9LV2386HvWtcN5-SkKpvoLn7qgryu719Wj8nm-eFpdbdJDMvyIRHCMqdzqYFzoyspObMGKm4Fp9yi5azEylDBGStsDjpHpMI4ynRWUQ2SLcj1IXcb-vfRxUG1PhrXNGXn-jEqLGSRCclRTCg9oCb0MQZXqW3wbRk-FYLa21K12ttSe1sKUE22pqOrn_xRt87-nfzqmYDbA-CmL3feBRWNd51x1gdnBmV7_1_-F1cdelg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989578417</pqid></control><display><type>article</type><title>Fixation and absorption in a fluctuating environment</title><source>Elsevier ScienceDirect Journals Complete</source><creator>Danino, Matan ; Shnerb, Nadav M.</creator><creatorcontrib>Danino, Matan ; Shnerb, Nadav M.</creatorcontrib><description>•Analyzing the fate of a new mutant/invader introduced into a fixed size population.•Incorporating fluctuating environment, selection and drift.•Using a generic model with telegraphic noise, we calculated the chance of fixation.•Formulas are given for the time to fixation and the time to absorption. A fundamental problem in the fields of population genetics, evolution, and community ecology, is the fate of a single mutant, or invader, introduced in a finite population of wild types. For a fixed-size community of N individuals, with Markovian, zero-sum dynamics driven by stochastic birth-death events, the mutant population eventually reaches either fixation or extinction. The classical analysis, provided by Kimura and his coworkers, is focused on the neutral case, [where the dynamics is only due to demographic stochasticity (drift)], and on time-independent selective forces (deleterious/beneficial mutation). However, both theoretical arguments and empirical analyses suggest that in many cases the selective forces fluctuate in time (temporal environmental stochasticity). Here we consider a generic model for a system with demographic noise and fluctuating selection. Our system is characterized by the time-averaged (log)-fitness s0 and zero-mean fitness fluctuations. These fluctuations, in turn, are parameterized by their amplitude γ and their correlation time δ. We provide asymptotic (large N) formulas for the chance of fixation, the mean time to fixation and the mean time to absorption. Our expressions interpolate correctly between the constant selection limit γ → 0 and the time-averaged neutral case s0=0.</description><identifier>ISSN: 0022-5193</identifier><identifier>EISSN: 1095-8541</identifier><identifier>DOI: 10.1016/j.jtbi.2018.01.004</identifier><identifier>PMID: 29330057</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Absorption ; Demographic stochasticity ; Drift ; Environmental stochasticity ; Evolution ; Fixation ; Selection</subject><ispartof>Journal of theoretical biology, 2018-03, Vol.441, p.84-92</ispartof><rights>2018 Elsevier Ltd</rights><rights>Copyright © 2018 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-77d3eb68b044cbf8843dc0f4d7424d1d43a1fc274339d60b61127ce23b5f2b083</citedby><cites>FETCH-LOGICAL-c356t-77d3eb68b044cbf8843dc0f4d7424d1d43a1fc274339d60b61127ce23b5f2b083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jtbi.2018.01.004$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29330057$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Danino, Matan</creatorcontrib><creatorcontrib>Shnerb, Nadav M.</creatorcontrib><title>Fixation and absorption in a fluctuating environment</title><title>Journal of theoretical biology</title><addtitle>J Theor Biol</addtitle><description>•Analyzing the fate of a new mutant/invader introduced into a fixed size population.•Incorporating fluctuating environment, selection and drift.•Using a generic model with telegraphic noise, we calculated the chance of fixation.•Formulas are given for the time to fixation and the time to absorption. A fundamental problem in the fields of population genetics, evolution, and community ecology, is the fate of a single mutant, or invader, introduced in a finite population of wild types. For a fixed-size community of N individuals, with Markovian, zero-sum dynamics driven by stochastic birth-death events, the mutant population eventually reaches either fixation or extinction. The classical analysis, provided by Kimura and his coworkers, is focused on the neutral case, [where the dynamics is only due to demographic stochasticity (drift)], and on time-independent selective forces (deleterious/beneficial mutation). However, both theoretical arguments and empirical analyses suggest that in many cases the selective forces fluctuate in time (temporal environmental stochasticity). Here we consider a generic model for a system with demographic noise and fluctuating selection. Our system is characterized by the time-averaged (log)-fitness s0 and zero-mean fitness fluctuations. These fluctuations, in turn, are parameterized by their amplitude γ and their correlation time δ. We provide asymptotic (large N) formulas for the chance of fixation, the mean time to fixation and the mean time to absorption. Our expressions interpolate correctly between the constant selection limit γ → 0 and the time-averaged neutral case s0=0.</description><subject>Absorption</subject><subject>Demographic stochasticity</subject><subject>Drift</subject><subject>Environmental stochasticity</subject><subject>Evolution</subject><subject>Fixation</subject><subject>Selection</subject><issn>0022-5193</issn><issn>1095-8541</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp9kE1PwzAMhiMEYmPwBzigHbm02EnapBIXNDFAmsQFzlHzUZSqHyNpJ_j3dAw4crJsP34lP4RcIqQImN_UaT1on1JAmQKmAPyIzBGKLJEZx2MyB6A0ybBgM3IWYw0ABWf5KZnRgjGATMwJX_uPcvB9tyw7uyx17MP2u_XTZFk1oxnGad-9LV2386HvWtcN5-SkKpvoLn7qgryu719Wj8nm-eFpdbdJDMvyIRHCMqdzqYFzoyspObMGKm4Fp9yi5azEylDBGStsDjpHpMI4ynRWUQ2SLcj1IXcb-vfRxUG1PhrXNGXn-jEqLGSRCclRTCg9oCb0MQZXqW3wbRk-FYLa21K12ttSe1sKUE22pqOrn_xRt87-nfzqmYDbA-CmL3feBRWNd51x1gdnBmV7_1_-F1cdelg</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Danino, Matan</creator><creator>Shnerb, Nadav M.</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180314</creationdate><title>Fixation and absorption in a fluctuating environment</title><author>Danino, Matan ; Shnerb, Nadav M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-77d3eb68b044cbf8843dc0f4d7424d1d43a1fc274339d60b61127ce23b5f2b083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption</topic><topic>Demographic stochasticity</topic><topic>Drift</topic><topic>Environmental stochasticity</topic><topic>Evolution</topic><topic>Fixation</topic><topic>Selection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Danino, Matan</creatorcontrib><creatorcontrib>Shnerb, Nadav M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of theoretical biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Danino, Matan</au><au>Shnerb, Nadav M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fixation and absorption in a fluctuating environment</atitle><jtitle>Journal of theoretical biology</jtitle><addtitle>J Theor Biol</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>441</volume><spage>84</spage><epage>92</epage><pages>84-92</pages><issn>0022-5193</issn><eissn>1095-8541</eissn><abstract>•Analyzing the fate of a new mutant/invader introduced into a fixed size population.•Incorporating fluctuating environment, selection and drift.•Using a generic model with telegraphic noise, we calculated the chance of fixation.•Formulas are given for the time to fixation and the time to absorption. A fundamental problem in the fields of population genetics, evolution, and community ecology, is the fate of a single mutant, or invader, introduced in a finite population of wild types. For a fixed-size community of N individuals, with Markovian, zero-sum dynamics driven by stochastic birth-death events, the mutant population eventually reaches either fixation or extinction. The classical analysis, provided by Kimura and his coworkers, is focused on the neutral case, [where the dynamics is only due to demographic stochasticity (drift)], and on time-independent selective forces (deleterious/beneficial mutation). However, both theoretical arguments and empirical analyses suggest that in many cases the selective forces fluctuate in time (temporal environmental stochasticity). Here we consider a generic model for a system with demographic noise and fluctuating selection. Our system is characterized by the time-averaged (log)-fitness s0 and zero-mean fitness fluctuations. These fluctuations, in turn, are parameterized by their amplitude γ and their correlation time δ. We provide asymptotic (large N) formulas for the chance of fixation, the mean time to fixation and the mean time to absorption. Our expressions interpolate correctly between the constant selection limit γ → 0 and the time-averaged neutral case s0=0.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29330057</pmid><doi>10.1016/j.jtbi.2018.01.004</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-5193
ispartof Journal of theoretical biology, 2018-03, Vol.441, p.84-92
issn 0022-5193
1095-8541
language eng
recordid cdi_proquest_miscellaneous_1989578417
source Elsevier ScienceDirect Journals Complete
subjects Absorption
Demographic stochasticity
Drift
Environmental stochasticity
Evolution
Fixation
Selection
title Fixation and absorption in a fluctuating environment
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A14%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fixation%20and%20absorption%20in%20a%20fluctuating%20environment&rft.jtitle=Journal%20of%20theoretical%20biology&rft.au=Danino,%20Matan&rft.date=2018-03-14&rft.volume=441&rft.spage=84&rft.epage=92&rft.pages=84-92&rft.issn=0022-5193&rft.eissn=1095-8541&rft_id=info:doi/10.1016/j.jtbi.2018.01.004&rft_dat=%3Cproquest_cross%3E1989578417%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989578417&rft_id=info:pmid/29330057&rft_els_id=S0022519318300043&rfr_iscdi=true