Two three-strand intermediates are processed during Rad51-driven DNA strand exchange

During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-stran...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature structural & molecular biology 2018-01, Vol.25 (1), p.29-36
Hauptverfasser: Ito, Kentaro, Murayama, Yasuto, Takahashi, Masayuki, Iwasaki, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 36
container_issue 1
container_start_page 29
container_title Nature structural & molecular biology
container_volume 25
creator Ito, Kentaro
Murayama, Yasuto
Takahashi, Masayuki
Iwasaki, Hiroshi
description During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca 2+ , which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca 2+ have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament. Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states.
doi_str_mv 10.1038/s41594-017-0002-8
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989566547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382118</galeid><sourcerecordid>A593382118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</originalsourceid><addsrcrecordid>eNp1kV1LHDEYhYO0qNX-gN6Ugd7Ui9h8TGaSy8XWKkgLur0O-XhnjexmtsmM1X9vhl2VLS25yEt4zptzOAh9oOSUEi6_5JoKVWNCW0wIYVjuoUMqaoGVkuLNy6z4AXqX811BhGj5PjpgijPOWnKI5vM_fTXcJgCch2Sir0IcIK3ABzNArkyCap16BzmDr_yYQlxU18YLin0K9xCrrz9m1VYKD-7WxAUco7edWWZ4v72P0K_zb_OzC3z18_vl2ewKOyH5gBmhhgP11tRctbWVTHnZFF_K1szXvC2_SGupA2YNFd5w25RJOtcxZUusI_R5s7c4_D1CHvQqZAfLpYnQj1lTJZVoGlG3Bf30F3rXjykWd5pRKVXLWMNeqYVZgg6x60swNy3VM6E4l4xSWajTf1DleFgF10foQnnfEZzsCAozwMOwMGPO-vLmepelG9alPucEnV6nsDLpUVOip9b1pnVdWtdT63rSfNyGG21p7kXxXHMB2AbI66lASK_p_7_1CbOus9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972262</pqid></control><display><type>article</type><title>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ito, Kentaro ; Murayama, Yasuto ; Takahashi, Masayuki ; Iwasaki, Hiroshi</creator><creatorcontrib>Ito, Kentaro ; Murayama, Yasuto ; Takahashi, Masayuki ; Iwasaki, Hiroshi</creatorcontrib><description>During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca 2+ , which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca 2+ have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament. Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-017-0002-8</identifier><identifier>PMID: 29323270</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/149 ; 631/45/173 ; Adenosine Triphosphate - chemistry ; Biochemistry ; Biological Microscopy ; Biological research ; Biomedical and Life Sciences ; Biotechnology ; Calcium ; Calcium - chemistry ; Calcium ions ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA, Fungal - chemistry ; DNA, Single-Stranded ; Exchanging ; Fluorometry ; Genetic aspects ; Genetic recombination ; Genetic research ; Homologous Recombination ; Homology ; Hydrolysis ; Intermediates ; Ions ; Kinetics ; Life Sciences ; Membrane Biology ; Nucleic acids ; Nucleoproteins - chemistry ; Physiological aspects ; Protein Binding ; Protein Domains ; Protein Structure ; Rad51 Recombinase - chemistry ; Recombinases ; Regression Analysis ; Schizosaccharomyces - chemistry ; Schizosaccharomyces pombe Proteins - chemistry ; Schizosaccharomyces pombe Proteins - metabolism ; Single-stranded DNA ; Yeast ; Yeasts</subject><ispartof>Nature structural &amp; molecular biology, 2018-01, Vol.25 (1), p.29-36</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</citedby><cites>FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</cites><orcidid>0000-0001-9221-5188 ; 0000-0002-0153-6873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-017-0002-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-017-0002-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29323270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Kentaro</creatorcontrib><creatorcontrib>Murayama, Yasuto</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Iwasaki, Hiroshi</creatorcontrib><title>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</title><title>Nature structural &amp; molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca 2+ , which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca 2+ have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament. Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states.</description><subject>631/337/149</subject><subject>631/45/173</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biological research</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium ions</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA, Fungal - chemistry</subject><subject>DNA, Single-Stranded</subject><subject>Exchanging</subject><subject>Fluorometry</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>Genetic research</subject><subject>Homologous Recombination</subject><subject>Homology</subject><subject>Hydrolysis</subject><subject>Intermediates</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Nucleic acids</subject><subject>Nucleoproteins - chemistry</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure</subject><subject>Rad51 Recombinase - chemistry</subject><subject>Recombinases</subject><subject>Regression Analysis</subject><subject>Schizosaccharomyces - chemistry</subject><subject>Schizosaccharomyces pombe Proteins - chemistry</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Single-stranded DNA</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV1LHDEYhYO0qNX-gN6Ugd7Ui9h8TGaSy8XWKkgLur0O-XhnjexmtsmM1X9vhl2VLS25yEt4zptzOAh9oOSUEi6_5JoKVWNCW0wIYVjuoUMqaoGVkuLNy6z4AXqX811BhGj5PjpgijPOWnKI5vM_fTXcJgCch2Sir0IcIK3ABzNArkyCap16BzmDr_yYQlxU18YLin0K9xCrrz9m1VYKD-7WxAUco7edWWZ4v72P0K_zb_OzC3z18_vl2ewKOyH5gBmhhgP11tRctbWVTHnZFF_K1szXvC2_SGupA2YNFd5w25RJOtcxZUusI_R5s7c4_D1CHvQqZAfLpYnQj1lTJZVoGlG3Bf30F3rXjykWd5pRKVXLWMNeqYVZgg6x60swNy3VM6E4l4xSWajTf1DleFgF10foQnnfEZzsCAozwMOwMGPO-vLmepelG9alPucEnV6nsDLpUVOip9b1pnVdWtdT63rSfNyGG21p7kXxXHMB2AbI66lASK_p_7_1CbOus9w</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ito, Kentaro</creator><creator>Murayama, Yasuto</creator><creator>Takahashi, Masayuki</creator><creator>Iwasaki, Hiroshi</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9221-5188</orcidid><orcidid>https://orcid.org/0000-0002-0153-6873</orcidid></search><sort><creationdate>20180101</creationdate><title>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</title><author>Ito, Kentaro ; Murayama, Yasuto ; Takahashi, Masayuki ; Iwasaki, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/337/149</topic><topic>631/45/173</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biological research</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium ions</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA, Fungal - chemistry</topic><topic>DNA, Single-Stranded</topic><topic>Exchanging</topic><topic>Fluorometry</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>Genetic research</topic><topic>Homologous Recombination</topic><topic>Homology</topic><topic>Hydrolysis</topic><topic>Intermediates</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Nucleic acids</topic><topic>Nucleoproteins - chemistry</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure</topic><topic>Rad51 Recombinase - chemistry</topic><topic>Recombinases</topic><topic>Regression Analysis</topic><topic>Schizosaccharomyces - chemistry</topic><topic>Schizosaccharomyces pombe Proteins - chemistry</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Single-stranded DNA</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Kentaro</creatorcontrib><creatorcontrib>Murayama, Yasuto</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Iwasaki, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural &amp; molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Kentaro</au><au>Murayama, Yasuto</au><au>Takahashi, Masayuki</au><au>Iwasaki, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</atitle><jtitle>Nature structural &amp; molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>29</spage><epage>36</epage><pages>29-36</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca 2+ , which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca 2+ have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament. Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29323270</pmid><doi>10.1038/s41594-017-0002-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9221-5188</orcidid><orcidid>https://orcid.org/0000-0002-0153-6873</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1545-9993
ispartof Nature structural & molecular biology, 2018-01, Vol.25 (1), p.29-36
issn 1545-9993
1545-9985
language eng
recordid cdi_proquest_miscellaneous_1989566547
source MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings
subjects 631/337/149
631/45/173
Adenosine Triphosphate - chemistry
Biochemistry
Biological Microscopy
Biological research
Biomedical and Life Sciences
Biotechnology
Calcium
Calcium - chemistry
Calcium ions
Computer Simulation
Deoxyribonucleic acid
DNA
DNA Damage
DNA, Fungal - chemistry
DNA, Single-Stranded
Exchanging
Fluorometry
Genetic aspects
Genetic recombination
Genetic research
Homologous Recombination
Homology
Hydrolysis
Intermediates
Ions
Kinetics
Life Sciences
Membrane Biology
Nucleic acids
Nucleoproteins - chemistry
Physiological aspects
Protein Binding
Protein Domains
Protein Structure
Rad51 Recombinase - chemistry
Recombinases
Regression Analysis
Schizosaccharomyces - chemistry
Schizosaccharomyces pombe Proteins - chemistry
Schizosaccharomyces pombe Proteins - metabolism
Single-stranded DNA
Yeast
Yeasts
title Two three-strand intermediates are processed during Rad51-driven DNA strand exchange
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20three-strand%20intermediates%20are%20processed%20during%20Rad51-driven%20DNA%20strand%20exchange&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Ito,%20Kentaro&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.spage=29&rft.epage=36&rft.pages=29-36&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-017-0002-8&rft_dat=%3Cgale_proqu%3EA593382118%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188972262&rft_id=info:pmid/29323270&rft_galeid=A593382118&rfr_iscdi=true