Two three-strand intermediates are processed during Rad51-driven DNA strand exchange
During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-stran...
Gespeichert in:
Veröffentlicht in: | Nature structural & molecular biology 2018-01, Vol.25 (1), p.29-36 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 36 |
---|---|
container_issue | 1 |
container_start_page | 29 |
container_title | Nature structural & molecular biology |
container_volume | 25 |
creator | Ito, Kentaro Murayama, Yasuto Takahashi, Masayuki Iwasaki, Hiroshi |
description | During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca
2+
, which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca
2+
have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament.
Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states. |
doi_str_mv | 10.1038/s41594-017-0002-8 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989566547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A593382118</galeid><sourcerecordid>A593382118</sourcerecordid><originalsourceid>FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</originalsourceid><addsrcrecordid>eNp1kV1LHDEYhYO0qNX-gN6Ugd7Ui9h8TGaSy8XWKkgLur0O-XhnjexmtsmM1X9vhl2VLS25yEt4zptzOAh9oOSUEi6_5JoKVWNCW0wIYVjuoUMqaoGVkuLNy6z4AXqX811BhGj5PjpgijPOWnKI5vM_fTXcJgCch2Sir0IcIK3ABzNArkyCap16BzmDr_yYQlxU18YLin0K9xCrrz9m1VYKD-7WxAUco7edWWZ4v72P0K_zb_OzC3z18_vl2ewKOyH5gBmhhgP11tRctbWVTHnZFF_K1szXvC2_SGupA2YNFd5w25RJOtcxZUusI_R5s7c4_D1CHvQqZAfLpYnQj1lTJZVoGlG3Bf30F3rXjykWd5pRKVXLWMNeqYVZgg6x60swNy3VM6E4l4xSWajTf1DleFgF10foQnnfEZzsCAozwMOwMGPO-vLmepelG9alPucEnV6nsDLpUVOip9b1pnVdWtdT63rSfNyGG21p7kXxXHMB2AbI66lASK_p_7_1CbOus9w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2188972262</pqid></control><display><type>article</type><title>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</title><source>MEDLINE</source><source>Nature Journals Online</source><source>SpringerLink Journals - AutoHoldings</source><creator>Ito, Kentaro ; Murayama, Yasuto ; Takahashi, Masayuki ; Iwasaki, Hiroshi</creator><creatorcontrib>Ito, Kentaro ; Murayama, Yasuto ; Takahashi, Masayuki ; Iwasaki, Hiroshi</creatorcontrib><description>During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca
2+
, which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca
2+
have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament.
Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states.</description><identifier>ISSN: 1545-9993</identifier><identifier>EISSN: 1545-9985</identifier><identifier>DOI: 10.1038/s41594-017-0002-8</identifier><identifier>PMID: 29323270</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>631/337/149 ; 631/45/173 ; Adenosine Triphosphate - chemistry ; Biochemistry ; Biological Microscopy ; Biological research ; Biomedical and Life Sciences ; Biotechnology ; Calcium ; Calcium - chemistry ; Calcium ions ; Computer Simulation ; Deoxyribonucleic acid ; DNA ; DNA Damage ; DNA, Fungal - chemistry ; DNA, Single-Stranded ; Exchanging ; Fluorometry ; Genetic aspects ; Genetic recombination ; Genetic research ; Homologous Recombination ; Homology ; Hydrolysis ; Intermediates ; Ions ; Kinetics ; Life Sciences ; Membrane Biology ; Nucleic acids ; Nucleoproteins - chemistry ; Physiological aspects ; Protein Binding ; Protein Domains ; Protein Structure ; Rad51 Recombinase - chemistry ; Recombinases ; Regression Analysis ; Schizosaccharomyces - chemistry ; Schizosaccharomyces pombe Proteins - chemistry ; Schizosaccharomyces pombe Proteins - metabolism ; Single-stranded DNA ; Yeast ; Yeasts</subject><ispartof>Nature structural & molecular biology, 2018-01, Vol.25 (1), p.29-36</ispartof><rights>The Author(s) 2017</rights><rights>COPYRIGHT 2018 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</citedby><cites>FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</cites><orcidid>0000-0001-9221-5188 ; 0000-0002-0153-6873</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41594-017-0002-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41594-017-0002-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,777,781,27905,27906,41469,42538,51300</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29323270$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ito, Kentaro</creatorcontrib><creatorcontrib>Murayama, Yasuto</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Iwasaki, Hiroshi</creatorcontrib><title>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</title><title>Nature structural & molecular biology</title><addtitle>Nat Struct Mol Biol</addtitle><addtitle>Nat Struct Mol Biol</addtitle><description>During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca
2+
, which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca
2+
have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament.
Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states.</description><subject>631/337/149</subject><subject>631/45/173</subject><subject>Adenosine Triphosphate - chemistry</subject><subject>Biochemistry</subject><subject>Biological Microscopy</subject><subject>Biological research</subject><subject>Biomedical and Life Sciences</subject><subject>Biotechnology</subject><subject>Calcium</subject><subject>Calcium - chemistry</subject><subject>Calcium ions</subject><subject>Computer Simulation</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA Damage</subject><subject>DNA, Fungal - chemistry</subject><subject>DNA, Single-Stranded</subject><subject>Exchanging</subject><subject>Fluorometry</subject><subject>Genetic aspects</subject><subject>Genetic recombination</subject><subject>Genetic research</subject><subject>Homologous Recombination</subject><subject>Homology</subject><subject>Hydrolysis</subject><subject>Intermediates</subject><subject>Ions</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Membrane Biology</subject><subject>Nucleic acids</subject><subject>Nucleoproteins - chemistry</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Domains</subject><subject>Protein Structure</subject><subject>Rad51 Recombinase - chemistry</subject><subject>Recombinases</subject><subject>Regression Analysis</subject><subject>Schizosaccharomyces - chemistry</subject><subject>Schizosaccharomyces pombe Proteins - chemistry</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><subject>Single-stranded DNA</subject><subject>Yeast</subject><subject>Yeasts</subject><issn>1545-9993</issn><issn>1545-9985</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp1kV1LHDEYhYO0qNX-gN6Ugd7Ui9h8TGaSy8XWKkgLur0O-XhnjexmtsmM1X9vhl2VLS25yEt4zptzOAh9oOSUEi6_5JoKVWNCW0wIYVjuoUMqaoGVkuLNy6z4AXqX811BhGj5PjpgijPOWnKI5vM_fTXcJgCch2Sir0IcIK3ABzNArkyCap16BzmDr_yYQlxU18YLin0K9xCrrz9m1VYKD-7WxAUco7edWWZ4v72P0K_zb_OzC3z18_vl2ewKOyH5gBmhhgP11tRctbWVTHnZFF_K1szXvC2_SGupA2YNFd5w25RJOtcxZUusI_R5s7c4_D1CHvQqZAfLpYnQj1lTJZVoGlG3Bf30F3rXjykWd5pRKVXLWMNeqYVZgg6x60swNy3VM6E4l4xSWajTf1DleFgF10foQnnfEZzsCAozwMOwMGPO-vLmepelG9alPucEnV6nsDLpUVOip9b1pnVdWtdT63rSfNyGG21p7kXxXHMB2AbI66lASK_p_7_1CbOus9w</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Ito, Kentaro</creator><creator>Murayama, Yasuto</creator><creator>Takahashi, Masayuki</creator><creator>Iwasaki, Hiroshi</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PADUT</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9221-5188</orcidid><orcidid>https://orcid.org/0000-0002-0153-6873</orcidid></search><sort><creationdate>20180101</creationdate><title>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</title><author>Ito, Kentaro ; Murayama, Yasuto ; Takahashi, Masayuki ; Iwasaki, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c583t-201a3e1dba43974b829d863279b42d437d518bb1ce2ba15da3b62ba8ccf29b993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>631/337/149</topic><topic>631/45/173</topic><topic>Adenosine Triphosphate - chemistry</topic><topic>Biochemistry</topic><topic>Biological Microscopy</topic><topic>Biological research</topic><topic>Biomedical and Life Sciences</topic><topic>Biotechnology</topic><topic>Calcium</topic><topic>Calcium - chemistry</topic><topic>Calcium ions</topic><topic>Computer Simulation</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA Damage</topic><topic>DNA, Fungal - chemistry</topic><topic>DNA, Single-Stranded</topic><topic>Exchanging</topic><topic>Fluorometry</topic><topic>Genetic aspects</topic><topic>Genetic recombination</topic><topic>Genetic research</topic><topic>Homologous Recombination</topic><topic>Homology</topic><topic>Hydrolysis</topic><topic>Intermediates</topic><topic>Ions</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Membrane Biology</topic><topic>Nucleic acids</topic><topic>Nucleoproteins - chemistry</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Domains</topic><topic>Protein Structure</topic><topic>Rad51 Recombinase - chemistry</topic><topic>Recombinases</topic><topic>Regression Analysis</topic><topic>Schizosaccharomyces - chemistry</topic><topic>Schizosaccharomyces pombe Proteins - chemistry</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><topic>Single-stranded DNA</topic><topic>Yeast</topic><topic>Yeasts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ito, Kentaro</creatorcontrib><creatorcontrib>Murayama, Yasuto</creatorcontrib><creatorcontrib>Takahashi, Masayuki</creatorcontrib><creatorcontrib>Iwasaki, Hiroshi</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Research Library China</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Nature structural & molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ito, Kentaro</au><au>Murayama, Yasuto</au><au>Takahashi, Masayuki</au><au>Iwasaki, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Two three-strand intermediates are processed during Rad51-driven DNA strand exchange</atitle><jtitle>Nature structural & molecular biology</jtitle><stitle>Nat Struct Mol Biol</stitle><addtitle>Nat Struct Mol Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>25</volume><issue>1</issue><spage>29</spage><epage>36</epage><pages>29-36</pages><issn>1545-9993</issn><eissn>1545-9985</eissn><abstract>During homologous recombination, Rad51 forms a nucleoprotein filament with single-stranded DNA (ssDNA) that undergoes strand exchange with homologous double-stranded DNA (dsDNA). Here, we use real-time analysis to show that strand exchange by fission yeast Rad51 proceeds via two distinct three-strand intermediates, C1 and C2. Both intermediates contain Rad51, but whereas the donor duplex remains intact in C1, the ssDNA strand is intertwined with the complementary strand of the donor duplex in C2. Swi5–Sfr1, an evolutionarily conserved recombination activator, facilitates the C1–C2 transition and subsequent ssDNA release from C2 to complete strand exchange in an ATP-hydrolysis-dependent manner. In contrast, Ca
2+
, which activates the Rad51 filament by curbing ATP hydrolysis, facilitates the C1–C2 transition but does not promote strand exchange. These results reveal that Swi5–Sfr1 and Ca
2+
have different activation modes in the late synaptic phase, despite their common function in stabilizing the presynaptic filament.
Real-time FRET analyses and biochemical assays reveal that Rad51 recombinase promotes DNA strand exchange via two distinct three-strand intermediate states.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>29323270</pmid><doi>10.1038/s41594-017-0002-8</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-9221-5188</orcidid><orcidid>https://orcid.org/0000-0002-0153-6873</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-9993 |
ispartof | Nature structural & molecular biology, 2018-01, Vol.25 (1), p.29-36 |
issn | 1545-9993 1545-9985 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989566547 |
source | MEDLINE; Nature Journals Online; SpringerLink Journals - AutoHoldings |
subjects | 631/337/149 631/45/173 Adenosine Triphosphate - chemistry Biochemistry Biological Microscopy Biological research Biomedical and Life Sciences Biotechnology Calcium Calcium - chemistry Calcium ions Computer Simulation Deoxyribonucleic acid DNA DNA Damage DNA, Fungal - chemistry DNA, Single-Stranded Exchanging Fluorometry Genetic aspects Genetic recombination Genetic research Homologous Recombination Homology Hydrolysis Intermediates Ions Kinetics Life Sciences Membrane Biology Nucleic acids Nucleoproteins - chemistry Physiological aspects Protein Binding Protein Domains Protein Structure Rad51 Recombinase - chemistry Recombinases Regression Analysis Schizosaccharomyces - chemistry Schizosaccharomyces pombe Proteins - chemistry Schizosaccharomyces pombe Proteins - metabolism Single-stranded DNA Yeast Yeasts |
title | Two three-strand intermediates are processed during Rad51-driven DNA strand exchange |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T12%3A45%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Two%20three-strand%20intermediates%20are%20processed%20during%20Rad51-driven%20DNA%20strand%20exchange&rft.jtitle=Nature%20structural%20&%20molecular%20biology&rft.au=Ito,%20Kentaro&rft.date=2018-01-01&rft.volume=25&rft.issue=1&rft.spage=29&rft.epage=36&rft.pages=29-36&rft.issn=1545-9993&rft.eissn=1545-9985&rft_id=info:doi/10.1038/s41594-017-0002-8&rft_dat=%3Cgale_proqu%3EA593382118%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2188972262&rft_id=info:pmid/29323270&rft_galeid=A593382118&rfr_iscdi=true |