Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles

The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Here...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS nano 2018-02, Vol.12 (2), p.994-1005
Hauptverfasser: Luo, Ying-Li, Xu, Cong-Fei, Li, Hong-Jun, Cao, Zhi-Ting, Liu, Jing, Wang, Ji-Long, Du, Xiao-Jiao, Yang, Xian-Zhu, Gu, Zhen, Wang, Jun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1005
container_issue 2
container_start_page 994
container_title ACS nano
container_volume 12
creator Luo, Ying-Li
Xu, Cong-Fei
Li, Hong-Jun
Cao, Zhi-Ting
Liu, Jing
Wang, Ji-Long
Du, Xiao-Jiao
Yang, Xian-Zhu
Gu, Zhen
Wang, Jun
description The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.
doi_str_mv 10.1021/acsnano.7b07874
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989556796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989556796</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qRHQTqTtEma4xhzCvMH6MSTIU3TmdE1NWmF_fdmrO7m5b0H7_O-vO8XgEsExwhidCuVr2VtxyyHLGPpERgintAYZvTj-DATNABn3q8hJAGip2CAeYLSDLMh-HyUytnmS650_NpoZUqjIlNH7-bHRnNd62hWmNbUq2jpd3UqW2PrwCxMY4p44r3xrS6iF1ttN9qFxVP4p5GuNarS_hyclLLy-qLvI7C8m71N7-PF8_xhOlnEMuG8jUucaK4wxhARnBRSUagozwlTBCqsZE654pIVGDJCNMoyldIMQiVVqgNQJiNwvddtnP3utG_Fxnilq0rW2nZeIJ5xQijjNKC3ezT49t7pUjTObKTbCgTFLlTRhyr6UMPFVS_e5RtdHPi_FANwswfCpVjbztXB679yv3_xgz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989556796</pqid></control><display><type>article</type><title>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</title><source>ACS Publications</source><source>MEDLINE</source><creator>Luo, Ying-Li ; Xu, Cong-Fei ; Li, Hong-Jun ; Cao, Zhi-Ting ; Liu, Jing ; Wang, Ji-Long ; Du, Xiao-Jiao ; Yang, Xian-Zhu ; Gu, Zhen ; Wang, Jun</creator><creatorcontrib>Luo, Ying-Li ; Xu, Cong-Fei ; Li, Hong-Jun ; Cao, Zhi-Ting ; Liu, Jing ; Wang, Ji-Long ; Du, Xiao-Jiao ; Yang, Xian-Zhu ; Gu, Zhen ; Wang, Jun</creatorcontrib><description>The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b07874</identifier><identifier>PMID: 29314827</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cations - chemistry ; Cells, Cultured ; CRISPR-Cas Systems - genetics ; Diabetes Mellitus, Experimental - chemically induced ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Type 2 - chemically induced ; Diabetes Mellitus, Type 2 - genetics ; Diabetes Mellitus, Type 2 - metabolism ; Diet, High-Fat ; Gene Editing ; HEK293 Cells ; Humans ; Lipids - chemistry ; Macrophages - chemistry ; Macrophages - metabolism ; Mice ; Mice, Inbred C57BL ; Nanoparticles - chemistry ; Netrin-1 - genetics ; Netrin-1 - metabolism ; Polymers - chemistry ; RAW 264.7 Cells</subject><ispartof>ACS nano, 2018-02, Vol.12 (2), p.994-1005</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</citedby><cites>FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</cites><orcidid>0000-0001-9957-9208 ; 0000-0002-1765-8445 ; 0000-0003-2947-4456 ; 0000-0002-1006-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b07874$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b07874$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29314827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Ying-Li</creatorcontrib><creatorcontrib>Xu, Cong-Fei</creatorcontrib><creatorcontrib>Li, Hong-Jun</creatorcontrib><creatorcontrib>Cao, Zhi-Ting</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Wang, Ji-Long</creatorcontrib><creatorcontrib>Du, Xiao-Jiao</creatorcontrib><creatorcontrib>Yang, Xian-Zhu</creatorcontrib><creatorcontrib>Gu, Zhen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.</description><subject>Animals</subject><subject>Cations - chemistry</subject><subject>Cells, Cultured</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Diabetes Mellitus, Experimental - chemically induced</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Type 2 - chemically induced</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diet, High-Fat</subject><subject>Gene Editing</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Lipids - chemistry</subject><subject>Macrophages - chemistry</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoparticles - chemistry</subject><subject>Netrin-1 - genetics</subject><subject>Netrin-1 - metabolism</subject><subject>Polymers - chemistry</subject><subject>RAW 264.7 Cells</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7P3qRHQTqTtEma4xhzCvMH6MSTIU3TmdE1NWmF_fdmrO7m5b0H7_O-vO8XgEsExwhidCuVr2VtxyyHLGPpERgintAYZvTj-DATNABn3q8hJAGip2CAeYLSDLMh-HyUytnmS650_NpoZUqjIlNH7-bHRnNd62hWmNbUq2jpd3UqW2PrwCxMY4p44r3xrS6iF1ttN9qFxVP4p5GuNarS_hyclLLy-qLvI7C8m71N7-PF8_xhOlnEMuG8jUucaK4wxhARnBRSUagozwlTBCqsZE654pIVGDJCNMoyldIMQiVVqgNQJiNwvddtnP3utG_Fxnilq0rW2nZeIJ5xQijjNKC3ezT49t7pUjTObKTbCgTFLlTRhyr6UMPFVS_e5RtdHPi_FANwswfCpVjbztXB679yv3_xgz4</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Luo, Ying-Li</creator><creator>Xu, Cong-Fei</creator><creator>Li, Hong-Jun</creator><creator>Cao, Zhi-Ting</creator><creator>Liu, Jing</creator><creator>Wang, Ji-Long</creator><creator>Du, Xiao-Jiao</creator><creator>Yang, Xian-Zhu</creator><creator>Gu, Zhen</creator><creator>Wang, Jun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9957-9208</orcidid><orcidid>https://orcid.org/0000-0002-1765-8445</orcidid><orcidid>https://orcid.org/0000-0003-2947-4456</orcidid><orcidid>https://orcid.org/0000-0002-1006-0950</orcidid></search><sort><creationdate>20180227</creationdate><title>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</title><author>Luo, Ying-Li ; Xu, Cong-Fei ; Li, Hong-Jun ; Cao, Zhi-Ting ; Liu, Jing ; Wang, Ji-Long ; Du, Xiao-Jiao ; Yang, Xian-Zhu ; Gu, Zhen ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cations - chemistry</topic><topic>Cells, Cultured</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Diabetes Mellitus, Experimental - chemically induced</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Type 2 - chemically induced</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diet, High-Fat</topic><topic>Gene Editing</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Lipids - chemistry</topic><topic>Macrophages - chemistry</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoparticles - chemistry</topic><topic>Netrin-1 - genetics</topic><topic>Netrin-1 - metabolism</topic><topic>Polymers - chemistry</topic><topic>RAW 264.7 Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Ying-Li</creatorcontrib><creatorcontrib>Xu, Cong-Fei</creatorcontrib><creatorcontrib>Li, Hong-Jun</creatorcontrib><creatorcontrib>Cao, Zhi-Ting</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Wang, Ji-Long</creatorcontrib><creatorcontrib>Du, Xiao-Jiao</creatorcontrib><creatorcontrib>Yang, Xian-Zhu</creatorcontrib><creatorcontrib>Gu, Zhen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Ying-Li</au><au>Xu, Cong-Fei</au><au>Li, Hong-Jun</au><au>Cao, Zhi-Ting</au><au>Liu, Jing</au><au>Wang, Ji-Long</au><au>Du, Xiao-Jiao</au><au>Yang, Xian-Zhu</au><au>Gu, Zhen</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>994</spage><epage>1005</epage><pages>994-1005</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29314827</pmid><doi>10.1021/acsnano.7b07874</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9957-9208</orcidid><orcidid>https://orcid.org/0000-0002-1765-8445</orcidid><orcidid>https://orcid.org/0000-0003-2947-4456</orcidid><orcidid>https://orcid.org/0000-0002-1006-0950</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1936-0851
ispartof ACS nano, 2018-02, Vol.12 (2), p.994-1005
issn 1936-0851
1936-086X
language eng
recordid cdi_proquest_miscellaneous_1989556796
source ACS Publications; MEDLINE
subjects Animals
Cations - chemistry
Cells, Cultured
CRISPR-Cas Systems - genetics
Diabetes Mellitus, Experimental - chemically induced
Diabetes Mellitus, Experimental - genetics
Diabetes Mellitus, Experimental - metabolism
Diabetes Mellitus, Type 2 - chemically induced
Diabetes Mellitus, Type 2 - genetics
Diabetes Mellitus, Type 2 - metabolism
Diet, High-Fat
Gene Editing
HEK293 Cells
Humans
Lipids - chemistry
Macrophages - chemistry
Macrophages - metabolism
Mice
Mice, Inbred C57BL
Nanoparticles - chemistry
Netrin-1 - genetics
Netrin-1 - metabolism
Polymers - chemistry
RAW 264.7 Cells
title Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage-Specific%20in%20Vivo%20Gene%20Editing%20Using%20Cationic%20Lipid-Assisted%20Polymeric%20Nanoparticles&rft.jtitle=ACS%20nano&rft.au=Luo,%20Ying-Li&rft.date=2018-02-27&rft.volume=12&rft.issue=2&rft.spage=994&rft.epage=1005&rft.pages=994-1005&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b07874&rft_dat=%3Cproquest_cross%3E1989556796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989556796&rft_id=info:pmid/29314827&rfr_iscdi=true