Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles
The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Here...
Gespeichert in:
Veröffentlicht in: | ACS nano 2018-02, Vol.12 (2), p.994-1005 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1005 |
---|---|
container_issue | 2 |
container_start_page | 994 |
container_title | ACS nano |
container_volume | 12 |
creator | Luo, Ying-Li Xu, Cong-Fei Li, Hong-Jun Cao, Zhi-Ting Liu, Jing Wang, Ji-Long Du, Xiao-Jiao Yang, Xian-Zhu Gu, Zhen Wang, Jun |
description | The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system. |
doi_str_mv | 10.1021/acsnano.7b07874 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989556796</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989556796</sourcerecordid><originalsourceid>FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</originalsourceid><addsrcrecordid>eNp1kM9LwzAUx4Mobk7P3qRHQTqTtEma4xhzCvMH6MSTIU3TmdE1NWmF_fdmrO7m5b0H7_O-vO8XgEsExwhidCuVr2VtxyyHLGPpERgintAYZvTj-DATNABn3q8hJAGip2CAeYLSDLMh-HyUytnmS650_NpoZUqjIlNH7-bHRnNd62hWmNbUq2jpd3UqW2PrwCxMY4p44r3xrS6iF1ttN9qFxVP4p5GuNarS_hyclLLy-qLvI7C8m71N7-PF8_xhOlnEMuG8jUucaK4wxhARnBRSUagozwlTBCqsZE654pIVGDJCNMoyldIMQiVVqgNQJiNwvddtnP3utG_Fxnilq0rW2nZeIJ5xQijjNKC3ezT49t7pUjTObKTbCgTFLlTRhyr6UMPFVS_e5RtdHPi_FANwswfCpVjbztXB679yv3_xgz4</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989556796</pqid></control><display><type>article</type><title>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</title><source>ACS Publications</source><source>MEDLINE</source><creator>Luo, Ying-Li ; Xu, Cong-Fei ; Li, Hong-Jun ; Cao, Zhi-Ting ; Liu, Jing ; Wang, Ji-Long ; Du, Xiao-Jiao ; Yang, Xian-Zhu ; Gu, Zhen ; Wang, Jun</creator><creatorcontrib>Luo, Ying-Li ; Xu, Cong-Fei ; Li, Hong-Jun ; Cao, Zhi-Ting ; Liu, Jing ; Wang, Ji-Long ; Du, Xiao-Jiao ; Yang, Xian-Zhu ; Gu, Zhen ; Wang, Jun</creatorcontrib><description>The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.</description><identifier>ISSN: 1936-0851</identifier><identifier>EISSN: 1936-086X</identifier><identifier>DOI: 10.1021/acsnano.7b07874</identifier><identifier>PMID: 29314827</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Animals ; Cations - chemistry ; Cells, Cultured ; CRISPR-Cas Systems - genetics ; Diabetes Mellitus, Experimental - chemically induced ; Diabetes Mellitus, Experimental - genetics ; Diabetes Mellitus, Experimental - metabolism ; Diabetes Mellitus, Type 2 - chemically induced ; Diabetes Mellitus, Type 2 - genetics ; Diabetes Mellitus, Type 2 - metabolism ; Diet, High-Fat ; Gene Editing ; HEK293 Cells ; Humans ; Lipids - chemistry ; Macrophages - chemistry ; Macrophages - metabolism ; Mice ; Mice, Inbred C57BL ; Nanoparticles - chemistry ; Netrin-1 - genetics ; Netrin-1 - metabolism ; Polymers - chemistry ; RAW 264.7 Cells</subject><ispartof>ACS nano, 2018-02, Vol.12 (2), p.994-1005</ispartof><rights>Copyright © 2018 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</citedby><cites>FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</cites><orcidid>0000-0001-9957-9208 ; 0000-0002-1765-8445 ; 0000-0003-2947-4456 ; 0000-0002-1006-0950</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsnano.7b07874$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsnano.7b07874$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29314827$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Luo, Ying-Li</creatorcontrib><creatorcontrib>Xu, Cong-Fei</creatorcontrib><creatorcontrib>Li, Hong-Jun</creatorcontrib><creatorcontrib>Cao, Zhi-Ting</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Wang, Ji-Long</creatorcontrib><creatorcontrib>Du, Xiao-Jiao</creatorcontrib><creatorcontrib>Yang, Xian-Zhu</creatorcontrib><creatorcontrib>Gu, Zhen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><title>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</title><title>ACS nano</title><addtitle>ACS Nano</addtitle><description>The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.</description><subject>Animals</subject><subject>Cations - chemistry</subject><subject>Cells, Cultured</subject><subject>CRISPR-Cas Systems - genetics</subject><subject>Diabetes Mellitus, Experimental - chemically induced</subject><subject>Diabetes Mellitus, Experimental - genetics</subject><subject>Diabetes Mellitus, Experimental - metabolism</subject><subject>Diabetes Mellitus, Type 2 - chemically induced</subject><subject>Diabetes Mellitus, Type 2 - genetics</subject><subject>Diabetes Mellitus, Type 2 - metabolism</subject><subject>Diet, High-Fat</subject><subject>Gene Editing</subject><subject>HEK293 Cells</subject><subject>Humans</subject><subject>Lipids - chemistry</subject><subject>Macrophages - chemistry</subject><subject>Macrophages - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Nanoparticles - chemistry</subject><subject>Netrin-1 - genetics</subject><subject>Netrin-1 - metabolism</subject><subject>Polymers - chemistry</subject><subject>RAW 264.7 Cells</subject><issn>1936-0851</issn><issn>1936-086X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM9LwzAUx4Mobk7P3qRHQTqTtEma4xhzCvMH6MSTIU3TmdE1NWmF_fdmrO7m5b0H7_O-vO8XgEsExwhidCuVr2VtxyyHLGPpERgintAYZvTj-DATNABn3q8hJAGip2CAeYLSDLMh-HyUytnmS650_NpoZUqjIlNH7-bHRnNd62hWmNbUq2jpd3UqW2PrwCxMY4p44r3xrS6iF1ttN9qFxVP4p5GuNarS_hyclLLy-qLvI7C8m71N7-PF8_xhOlnEMuG8jUucaK4wxhARnBRSUagozwlTBCqsZE654pIVGDJCNMoyldIMQiVVqgNQJiNwvddtnP3utG_Fxnilq0rW2nZeIJ5xQijjNKC3ezT49t7pUjTObKTbCgTFLlTRhyr6UMPFVS_e5RtdHPi_FANwswfCpVjbztXB679yv3_xgz4</recordid><startdate>20180227</startdate><enddate>20180227</enddate><creator>Luo, Ying-Li</creator><creator>Xu, Cong-Fei</creator><creator>Li, Hong-Jun</creator><creator>Cao, Zhi-Ting</creator><creator>Liu, Jing</creator><creator>Wang, Ji-Long</creator><creator>Du, Xiao-Jiao</creator><creator>Yang, Xian-Zhu</creator><creator>Gu, Zhen</creator><creator>Wang, Jun</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-9957-9208</orcidid><orcidid>https://orcid.org/0000-0002-1765-8445</orcidid><orcidid>https://orcid.org/0000-0003-2947-4456</orcidid><orcidid>https://orcid.org/0000-0002-1006-0950</orcidid></search><sort><creationdate>20180227</creationdate><title>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</title><author>Luo, Ying-Li ; Xu, Cong-Fei ; Li, Hong-Jun ; Cao, Zhi-Ting ; Liu, Jing ; Wang, Ji-Long ; Du, Xiao-Jiao ; Yang, Xian-Zhu ; Gu, Zhen ; Wang, Jun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a399t-f23e9c22201523dac60c69b57c50c2cab69c9a7d20755e188c46800cac4e0c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Cations - chemistry</topic><topic>Cells, Cultured</topic><topic>CRISPR-Cas Systems - genetics</topic><topic>Diabetes Mellitus, Experimental - chemically induced</topic><topic>Diabetes Mellitus, Experimental - genetics</topic><topic>Diabetes Mellitus, Experimental - metabolism</topic><topic>Diabetes Mellitus, Type 2 - chemically induced</topic><topic>Diabetes Mellitus, Type 2 - genetics</topic><topic>Diabetes Mellitus, Type 2 - metabolism</topic><topic>Diet, High-Fat</topic><topic>Gene Editing</topic><topic>HEK293 Cells</topic><topic>Humans</topic><topic>Lipids - chemistry</topic><topic>Macrophages - chemistry</topic><topic>Macrophages - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Nanoparticles - chemistry</topic><topic>Netrin-1 - genetics</topic><topic>Netrin-1 - metabolism</topic><topic>Polymers - chemistry</topic><topic>RAW 264.7 Cells</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Luo, Ying-Li</creatorcontrib><creatorcontrib>Xu, Cong-Fei</creatorcontrib><creatorcontrib>Li, Hong-Jun</creatorcontrib><creatorcontrib>Cao, Zhi-Ting</creatorcontrib><creatorcontrib>Liu, Jing</creatorcontrib><creatorcontrib>Wang, Ji-Long</creatorcontrib><creatorcontrib>Du, Xiao-Jiao</creatorcontrib><creatorcontrib>Yang, Xian-Zhu</creatorcontrib><creatorcontrib>Gu, Zhen</creatorcontrib><creatorcontrib>Wang, Jun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS nano</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Luo, Ying-Li</au><au>Xu, Cong-Fei</au><au>Li, Hong-Jun</au><au>Cao, Zhi-Ting</au><au>Liu, Jing</au><au>Wang, Ji-Long</au><au>Du, Xiao-Jiao</au><au>Yang, Xian-Zhu</au><au>Gu, Zhen</au><au>Wang, Jun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles</atitle><jtitle>ACS nano</jtitle><addtitle>ACS Nano</addtitle><date>2018-02-27</date><risdate>2018</risdate><volume>12</volume><issue>2</issue><spage>994</spage><epage>1005</epage><pages>994-1005</pages><issn>1936-0851</issn><eissn>1936-086X</eissn><abstract>The CRISPR/Cas9 gene editing technology holds promise for the treatment of multiple diseases. However, the inability to perform specific gene editing in targeted tissues and cells, which may cause off-target effects, is one of the critical bottlenecks for therapeutic application of CRISPR/Cas9. Herein, macrophage-specific promoter-driven Cas9 expression plasmids (pM458 and pM330) were constructed and encapsulated in cationic lipid-assisted PEG-b-PLGA nanoparticles (CLAN). The obtained nanoparticles encapsulating the CRISPR/Cas9 plasmids were able to specifically express Cas9 in macrophages as well as their precursor monocytes both in vitro and in vivo. More importantly, after further encoding a guide RNA targeting Ntn1 (sgNtn1) into the plasmid, the resultant CLANpM330/sgNtn1 successfully disrupted the Ntn1 gene in macrophages and their precursor monocytes in vivo, which reduced expression of netrin-1 (encoded by Ntn1) and subsequently improved type 2 diabetes (T2D) symptoms. Meanwhile, the Ntn1 gene was not disrupted in other cells due to specific expression of Cas9 by the CD68 promoter. This strategy provides alternative avenues for specific in vivo gene editing with the CRISPR/Cas9 system.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29314827</pmid><doi>10.1021/acsnano.7b07874</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-9957-9208</orcidid><orcidid>https://orcid.org/0000-0002-1765-8445</orcidid><orcidid>https://orcid.org/0000-0003-2947-4456</orcidid><orcidid>https://orcid.org/0000-0002-1006-0950</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-0851 |
ispartof | ACS nano, 2018-02, Vol.12 (2), p.994-1005 |
issn | 1936-0851 1936-086X |
language | eng |
recordid | cdi_proquest_miscellaneous_1989556796 |
source | ACS Publications; MEDLINE |
subjects | Animals Cations - chemistry Cells, Cultured CRISPR-Cas Systems - genetics Diabetes Mellitus, Experimental - chemically induced Diabetes Mellitus, Experimental - genetics Diabetes Mellitus, Experimental - metabolism Diabetes Mellitus, Type 2 - chemically induced Diabetes Mellitus, Type 2 - genetics Diabetes Mellitus, Type 2 - metabolism Diet, High-Fat Gene Editing HEK293 Cells Humans Lipids - chemistry Macrophages - chemistry Macrophages - metabolism Mice Mice, Inbred C57BL Nanoparticles - chemistry Netrin-1 - genetics Netrin-1 - metabolism Polymers - chemistry RAW 264.7 Cells |
title | Macrophage-Specific in Vivo Gene Editing Using Cationic Lipid-Assisted Polymeric Nanoparticles |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T07%3A48%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Macrophage-Specific%20in%20Vivo%20Gene%20Editing%20Using%20Cationic%20Lipid-Assisted%20Polymeric%20Nanoparticles&rft.jtitle=ACS%20nano&rft.au=Luo,%20Ying-Li&rft.date=2018-02-27&rft.volume=12&rft.issue=2&rft.spage=994&rft.epage=1005&rft.pages=994-1005&rft.issn=1936-0851&rft.eissn=1936-086X&rft_id=info:doi/10.1021/acsnano.7b07874&rft_dat=%3Cproquest_cross%3E1989556796%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989556796&rft_id=info:pmid/29314827&rfr_iscdi=true |