Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control
Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molec...
Gespeichert in:
Veröffentlicht in: | Advanced materials (Weinheim) 2018-02, Vol.30 (8), p.n/a |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 8 |
container_start_page | |
container_title | Advanced materials (Weinheim) |
container_volume | 30 |
creator | Shao, Changyu Zhao, Ruibo Jiang, Shuqin Yao, Shasha Wu, Zhifang Jin, Biao Yang, Yuling Pan, Haihua Tang, Ruikang |
description | Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front.
A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization. |
doi_str_mv | 10.1002/adma.201704876 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989555826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989555826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhi3UqmxprxyRpV64ZDt2YifubUm_VgLRQ1GPlpNMwCixqe0FbdUfX6OloPbCaS7PPJp3XkIOGSwZAH9vhtksObAaqqaWe2TBBGdFBUq8IAtQpSiUrJp98jrGawBQEuQrss9VyURTqgX53doUTEK6nm-Cv8VIWz9N5hIdPbMOg5nsL5Osd_TWGrp2CcNoeqQ_MCXrLj_QFf12tY229_0VzrY3E71wA4aYjBsyQP1IT6yf_3W13qXgpzfk5WimiG8f5gG5-Pzpe_u1OD3_sm5Xp0Wfw8iiLmshjRrLTsoBBZeyLjnCwFBUSqBUJYwDGCMZz38w9dCNIFWloGO8UmNXHpDjnTdH_LnBmPRsY485p0O_iZqpRgkhGi4z-u4_9NpvgsvXaZ7_rZpGNCxTyx3VBx9jwFHfBDubsNUM9H0v-r4X_dhLXjh60G66GYdH_G8RGVA74M5OuH1Gp1cfz1ZP8j-5p5qG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002988581</pqid></control><display><type>article</type><title>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shao, Changyu ; Zhao, Ruibo ; Jiang, Shuqin ; Yao, Shasha ; Wu, Zhifang ; Jin, Biao ; Yang, Yuling ; Pan, Haihua ; Tang, Ruikang</creator><creatorcontrib>Shao, Changyu ; Zhao, Ruibo ; Jiang, Shuqin ; Yao, Shasha ; Wu, Zhifang ; Jin, Biao ; Yang, Yuling ; Pan, Haihua ; Tang, Ruikang</creatorcontrib><description>Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front.
A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201704876</identifier><identifier>PMID: 29315839</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; Biomolecules ; Bones ; calcium phosphate ; Calcium phosphates ; citrate ; Collagen ; Dentin ; Hydroxyapatite ; interface wetting ; Interfacial energy ; Materials science ; Mineralization ; Osteoporosis ; Surgical implants ; Wetting</subject><ispartof>Advanced materials (Weinheim), 2018-02, Vol.30 (8), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</citedby><cites>FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</cites><orcidid>0000-0001-8191-0871 ; 0000-0001-5277-7338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201704876$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201704876$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29315839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Changyu</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Jiang, Shuqin</creatorcontrib><creatorcontrib>Yao, Shasha</creatorcontrib><creatorcontrib>Wu, Zhifang</creatorcontrib><creatorcontrib>Jin, Biao</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Pan, Haihua</creatorcontrib><creatorcontrib>Tang, Ruikang</creatorcontrib><title>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front.
A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomolecules</subject><subject>Bones</subject><subject>calcium phosphate</subject><subject>Calcium phosphates</subject><subject>citrate</subject><subject>Collagen</subject><subject>Dentin</subject><subject>Hydroxyapatite</subject><subject>interface wetting</subject><subject>Interfacial energy</subject><subject>Materials science</subject><subject>Mineralization</subject><subject>Osteoporosis</subject><subject>Surgical implants</subject><subject>Wetting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhi3UqmxprxyRpV64ZDt2YifubUm_VgLRQ1GPlpNMwCixqe0FbdUfX6OloPbCaS7PPJp3XkIOGSwZAH9vhtksObAaqqaWe2TBBGdFBUq8IAtQpSiUrJp98jrGawBQEuQrss9VyURTqgX53doUTEK6nm-Cv8VIWz9N5hIdPbMOg5nsL5Osd_TWGrp2CcNoeqQ_MCXrLj_QFf12tY229_0VzrY3E71wA4aYjBsyQP1IT6yf_3W13qXgpzfk5WimiG8f5gG5-Pzpe_u1OD3_sm5Xp0Wfw8iiLmshjRrLTsoBBZeyLjnCwFBUSqBUJYwDGCMZz38w9dCNIFWloGO8UmNXHpDjnTdH_LnBmPRsY485p0O_iZqpRgkhGi4z-u4_9NpvgsvXaZ7_rZpGNCxTyx3VBx9jwFHfBDubsNUM9H0v-r4X_dhLXjh60G66GYdH_G8RGVA74M5OuH1Gp1cfz1ZP8j-5p5qG</recordid><startdate>20180222</startdate><enddate>20180222</enddate><creator>Shao, Changyu</creator><creator>Zhao, Ruibo</creator><creator>Jiang, Shuqin</creator><creator>Yao, Shasha</creator><creator>Wu, Zhifang</creator><creator>Jin, Biao</creator><creator>Yang, Yuling</creator><creator>Pan, Haihua</creator><creator>Tang, Ruikang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8191-0871</orcidid><orcidid>https://orcid.org/0000-0001-5277-7338</orcidid></search><sort><creationdate>20180222</creationdate><title>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</title><author>Shao, Changyu ; Zhao, Ruibo ; Jiang, Shuqin ; Yao, Shasha ; Wu, Zhifang ; Jin, Biao ; Yang, Yuling ; Pan, Haihua ; Tang, Ruikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomolecules</topic><topic>Bones</topic><topic>calcium phosphate</topic><topic>Calcium phosphates</topic><topic>citrate</topic><topic>Collagen</topic><topic>Dentin</topic><topic>Hydroxyapatite</topic><topic>interface wetting</topic><topic>Interfacial energy</topic><topic>Materials science</topic><topic>Mineralization</topic><topic>Osteoporosis</topic><topic>Surgical implants</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Changyu</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Jiang, Shuqin</creatorcontrib><creatorcontrib>Yao, Shasha</creatorcontrib><creatorcontrib>Wu, Zhifang</creatorcontrib><creatorcontrib>Jin, Biao</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Pan, Haihua</creatorcontrib><creatorcontrib>Tang, Ruikang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Changyu</au><au>Zhao, Ruibo</au><au>Jiang, Shuqin</au><au>Yao, Shasha</au><au>Wu, Zhifang</au><au>Jin, Biao</au><au>Yang, Yuling</au><au>Pan, Haihua</au><au>Tang, Ruikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-02-22</date><risdate>2018</risdate><volume>30</volume><issue>8</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front.
A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29315839</pmid><doi>10.1002/adma.201704876</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8191-0871</orcidid><orcidid>https://orcid.org/0000-0001-5277-7338</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0935-9648 |
ispartof | Advanced materials (Weinheim), 2018-02, Vol.30 (8), p.n/a |
issn | 0935-9648 1521-4095 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989555826 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Biocompatibility Biomedical materials Biomolecules Bones calcium phosphate Calcium phosphates citrate Collagen Dentin Hydroxyapatite interface wetting Interfacial energy Materials science Mineralization Osteoporosis Surgical implants Wetting |
title | Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Citrate%20Improves%20Collagen%20Mineralization%20via%20Interface%20Wetting:%20A%20Physicochemical%20Understanding%20of%20Biomineralization%20Control&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shao,%20Changyu&rft.date=2018-02-22&rft.volume=30&rft.issue=8&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201704876&rft_dat=%3Cproquest_cross%3E1989555826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002988581&rft_id=info:pmid/29315839&rfr_iscdi=true |