Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control

Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molec...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Advanced materials (Weinheim) 2018-02, Vol.30 (8), p.n/a
Hauptverfasser: Shao, Changyu, Zhao, Ruibo, Jiang, Shuqin, Yao, Shasha, Wu, Zhifang, Jin, Biao, Yang, Yuling, Pan, Haihua, Tang, Ruikang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 8
container_start_page
container_title Advanced materials (Weinheim)
container_volume 30
creator Shao, Changyu
Zhao, Ruibo
Jiang, Shuqin
Yao, Shasha
Wu, Zhifang
Jin, Biao
Yang, Yuling
Pan, Haihua
Tang, Ruikang
description Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front. A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization.
doi_str_mv 10.1002/adma.201704876
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989555826</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989555826</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</originalsourceid><addsrcrecordid>eNqFkU1P3DAQhi3UqmxprxyRpV64ZDt2YifubUm_VgLRQ1GPlpNMwCixqe0FbdUfX6OloPbCaS7PPJp3XkIOGSwZAH9vhtksObAaqqaWe2TBBGdFBUq8IAtQpSiUrJp98jrGawBQEuQrss9VyURTqgX53doUTEK6nm-Cv8VIWz9N5hIdPbMOg5nsL5Osd_TWGrp2CcNoeqQ_MCXrLj_QFf12tY229_0VzrY3E71wA4aYjBsyQP1IT6yf_3W13qXgpzfk5WimiG8f5gG5-Pzpe_u1OD3_sm5Xp0Wfw8iiLmshjRrLTsoBBZeyLjnCwFBUSqBUJYwDGCMZz38w9dCNIFWloGO8UmNXHpDjnTdH_LnBmPRsY485p0O_iZqpRgkhGi4z-u4_9NpvgsvXaZ7_rZpGNCxTyx3VBx9jwFHfBDubsNUM9H0v-r4X_dhLXjh60G66GYdH_G8RGVA74M5OuH1Gp1cfz1ZP8j-5p5qG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002988581</pqid></control><display><type>article</type><title>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Shao, Changyu ; Zhao, Ruibo ; Jiang, Shuqin ; Yao, Shasha ; Wu, Zhifang ; Jin, Biao ; Yang, Yuling ; Pan, Haihua ; Tang, Ruikang</creator><creatorcontrib>Shao, Changyu ; Zhao, Ruibo ; Jiang, Shuqin ; Yao, Shasha ; Wu, Zhifang ; Jin, Biao ; Yang, Yuling ; Pan, Haihua ; Tang, Ruikang</creatorcontrib><description>Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front. A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization.</description><identifier>ISSN: 0935-9648</identifier><identifier>EISSN: 1521-4095</identifier><identifier>DOI: 10.1002/adma.201704876</identifier><identifier>PMID: 29315839</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Biocompatibility ; Biomedical materials ; Biomolecules ; Bones ; calcium phosphate ; Calcium phosphates ; citrate ; Collagen ; Dentin ; Hydroxyapatite ; interface wetting ; Interfacial energy ; Materials science ; Mineralization ; Osteoporosis ; Surgical implants ; Wetting</subject><ispartof>Advanced materials (Weinheim), 2018-02, Vol.30 (8), p.n/a</ispartof><rights>2018 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</citedby><cites>FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</cites><orcidid>0000-0001-8191-0871 ; 0000-0001-5277-7338</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fadma.201704876$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fadma.201704876$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29315839$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Shao, Changyu</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Jiang, Shuqin</creatorcontrib><creatorcontrib>Yao, Shasha</creatorcontrib><creatorcontrib>Wu, Zhifang</creatorcontrib><creatorcontrib>Jin, Biao</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Pan, Haihua</creatorcontrib><creatorcontrib>Tang, Ruikang</creatorcontrib><title>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</title><title>Advanced materials (Weinheim)</title><addtitle>Adv Mater</addtitle><description>Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front. A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization.</description><subject>Biocompatibility</subject><subject>Biomedical materials</subject><subject>Biomolecules</subject><subject>Bones</subject><subject>calcium phosphate</subject><subject>Calcium phosphates</subject><subject>citrate</subject><subject>Collagen</subject><subject>Dentin</subject><subject>Hydroxyapatite</subject><subject>interface wetting</subject><subject>Interfacial energy</subject><subject>Materials science</subject><subject>Mineralization</subject><subject>Osteoporosis</subject><subject>Surgical implants</subject><subject>Wetting</subject><issn>0935-9648</issn><issn>1521-4095</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkU1P3DAQhi3UqmxprxyRpV64ZDt2YifubUm_VgLRQ1GPlpNMwCixqe0FbdUfX6OloPbCaS7PPJp3XkIOGSwZAH9vhtksObAaqqaWe2TBBGdFBUq8IAtQpSiUrJp98jrGawBQEuQrss9VyURTqgX53doUTEK6nm-Cv8VIWz9N5hIdPbMOg5nsL5Osd_TWGrp2CcNoeqQ_MCXrLj_QFf12tY229_0VzrY3E71wA4aYjBsyQP1IT6yf_3W13qXgpzfk5WimiG8f5gG5-Pzpe_u1OD3_sm5Xp0Wfw8iiLmshjRrLTsoBBZeyLjnCwFBUSqBUJYwDGCMZz38w9dCNIFWloGO8UmNXHpDjnTdH_LnBmPRsY485p0O_iZqpRgkhGi4z-u4_9NpvgsvXaZ7_rZpGNCxTyx3VBx9jwFHfBDubsNUM9H0v-r4X_dhLXjh60G66GYdH_G8RGVA74M5OuH1Gp1cfz1ZP8j-5p5qG</recordid><startdate>20180222</startdate><enddate>20180222</enddate><creator>Shao, Changyu</creator><creator>Zhao, Ruibo</creator><creator>Jiang, Shuqin</creator><creator>Yao, Shasha</creator><creator>Wu, Zhifang</creator><creator>Jin, Biao</creator><creator>Yang, Yuling</creator><creator>Pan, Haihua</creator><creator>Tang, Ruikang</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-8191-0871</orcidid><orcidid>https://orcid.org/0000-0001-5277-7338</orcidid></search><sort><creationdate>20180222</creationdate><title>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</title><author>Shao, Changyu ; Zhao, Ruibo ; Jiang, Shuqin ; Yao, Shasha ; Wu, Zhifang ; Jin, Biao ; Yang, Yuling ; Pan, Haihua ; Tang, Ruikang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5216-73756a9f3b66de5266732e0d1e5495e6930fd0aa612170a7dbf069490b1249fb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biomedical materials</topic><topic>Biomolecules</topic><topic>Bones</topic><topic>calcium phosphate</topic><topic>Calcium phosphates</topic><topic>citrate</topic><topic>Collagen</topic><topic>Dentin</topic><topic>Hydroxyapatite</topic><topic>interface wetting</topic><topic>Interfacial energy</topic><topic>Materials science</topic><topic>Mineralization</topic><topic>Osteoporosis</topic><topic>Surgical implants</topic><topic>Wetting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Shao, Changyu</creatorcontrib><creatorcontrib>Zhao, Ruibo</creatorcontrib><creatorcontrib>Jiang, Shuqin</creatorcontrib><creatorcontrib>Yao, Shasha</creatorcontrib><creatorcontrib>Wu, Zhifang</creatorcontrib><creatorcontrib>Jin, Biao</creatorcontrib><creatorcontrib>Yang, Yuling</creatorcontrib><creatorcontrib>Pan, Haihua</creatorcontrib><creatorcontrib>Tang, Ruikang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>MEDLINE - Academic</collection><jtitle>Advanced materials (Weinheim)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Shao, Changyu</au><au>Zhao, Ruibo</au><au>Jiang, Shuqin</au><au>Yao, Shasha</au><au>Wu, Zhifang</au><au>Jin, Biao</au><au>Yang, Yuling</au><au>Pan, Haihua</au><au>Tang, Ruikang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control</atitle><jtitle>Advanced materials (Weinheim)</jtitle><addtitle>Adv Mater</addtitle><date>2018-02-22</date><risdate>2018</risdate><volume>30</volume><issue>8</issue><epage>n/a</epage><issn>0935-9648</issn><eissn>1521-4095</eissn><abstract>Biological hard tissues such as bones always contain extremely high levels of citrate, which is believed to play an important role in bone formation as well as in osteoporosis treatments. However, its mechanism on biomineralization is not elucidated. Here, it is found that the adsorbed citrate molecules on collagen fibrils can significantly reduce the interfacial energy between the biological matrix and the amorphous calcium phosphate precursor to enhance their wetting effect at the early biomineralization stage, sequentially facilitating the intrafibrillar formation of hydroxyapatite to produce an inorganic–organic composite. It is demonstrated experimentally that only collagen fibrils containing ≈8.2 wt% of bound citrate (close to the level in biological bone) can reach the full mineralization as those in natural bones. The effect of citrate on the promotion of the collagen mineralization degree is also confirmed by in vitro dentin repair. This finding demonstrates the importance of interfacial controls in biomineralization and more generally, provides a physicochemical view about the regulation effect of small biomolecules on the biomineralization front. A high level of citrate‐pretreated collagen fibrils can significantly reduce the interfacial energy between the biological matrix and amorphous calcium phosphate precursors at the early mineralization stage, which sequentially facilitates intrafibrillar mineralization and produces an inorganic–organic composite using a wetting effect. This finding demonstrates the importance of interfacial controls in biomineralization.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29315839</pmid><doi>10.1002/adma.201704876</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0001-8191-0871</orcidid><orcidid>https://orcid.org/0000-0001-5277-7338</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0935-9648
ispartof Advanced materials (Weinheim), 2018-02, Vol.30 (8), p.n/a
issn 0935-9648
1521-4095
language eng
recordid cdi_proquest_miscellaneous_1989555826
source Wiley Online Library Journals Frontfile Complete
subjects Biocompatibility
Biomedical materials
Biomolecules
Bones
calcium phosphate
Calcium phosphates
citrate
Collagen
Dentin
Hydroxyapatite
interface wetting
Interfacial energy
Materials science
Mineralization
Osteoporosis
Surgical implants
Wetting
title Citrate Improves Collagen Mineralization via Interface Wetting: A Physicochemical Understanding of Biomineralization Control
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T06%3A06%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Citrate%20Improves%20Collagen%20Mineralization%20via%20Interface%20Wetting:%20A%20Physicochemical%20Understanding%20of%20Biomineralization%20Control&rft.jtitle=Advanced%20materials%20(Weinheim)&rft.au=Shao,%20Changyu&rft.date=2018-02-22&rft.volume=30&rft.issue=8&rft.epage=n/a&rft.issn=0935-9648&rft.eissn=1521-4095&rft_id=info:doi/10.1002/adma.201704876&rft_dat=%3Cproquest_cross%3E1989555826%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002988581&rft_id=info:pmid/29315839&rfr_iscdi=true