Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis

Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Cellular physiology and biochemistry 2018-01, Vol.45 (1), p.131-147
Hauptverfasser: Gao, Yana, Yu, Hai, Liu, Yunhui, Liu, Xiaobai, Zheng, Jian, Ma, Jun, Gong, Wei, Chen, Jiajia, Zhao, Lini, Tian, Yu, Xue, Yixue
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 147
container_issue 1
container_start_page 131
container_title Cellular physiology and biochemistry
container_volume 45
creator Gao, Yana
Yu, Hai
Liu, Yunhui
Liu, Xiaobai
Zheng, Jian
Ma, Jun
Gong, Wei
Chen, Jiajia
Zhao, Lini
Tian, Yu
Xue, Yixue
description Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and VM formation. Quantitative real-time PCR was performed to determine the expression levels of HOXA-AS2 in glioma samples and glioblastoma cell lines. CD34-periodic acid-Schiff dual-staining was performed to assess VM in glioma samples. CCK-8, transwell, and Matrigel tube formation assays were performed to measure the effects of HOXA-AS2 knockdown on cell viability, migration, invasion, and VM tube formation, respectively. RNA immunoprecipitation, dual-luciferase reporter and Western blot assays were performed to explore the molecular mechanisms underlying the functions of HOXS-AS2 in glioblastoma cells. A nude mouse xenograft model was used to investigate the role of HOXA-AS2 in xenograft glioma growth and VM density. Student's t-tests, one-way ANOVAs followed by Bonferroni posthoc tests, and chi-square tests were used for the statistical analyses. HOXA-AS2 was upregulated in glioma samples and cell lines and was positively correlated with VM. HOXA-AS2 knockdown attenuated cell viability, migration, invasion, and VM formation in glioma cells and inhibited the expression of vascular endothelial-cadherin (VE-cadherin), as well as the expression and activity of matrix metalloproteinase matrix metalloproteinase (MMP)-2 and MMP-9. miR-373 was downregulated in glioma samples and cell lines and suppressed malignancy in glioblastoma cells. HOXA-AS2 bound to miR-373 and negatively regulated its expression. Epidermal growth factor receptor (EGFR), a target of miR-373, increased the expression levels of VE-cadherin, as well as the expression and activity levels of MMP-2 and MMP-9, via activating phosphatidylinositol 3-kinase/serine/threonine kinase pathways. HOXA-AS2 knockdown combined with miR-373 overexpression yielded optimal tumor suppressive effects and the lowest VM density in vivo. HOXA-AS2 knockdown inhibited malignant glioma behaviors and VM formation via the miR-373/EGFR axis.
doi_str_mv 10.1159/000486253
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989554944</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a863abde451041e28b9e3e1137f68590</doaj_id><sourcerecordid>2117165230</sourcerecordid><originalsourceid>FETCH-LOGICAL-c463t-b3387865116cd6870b8f89906c2d48187c3d486f164e858c882a889bc90583713</originalsourceid><addsrcrecordid>eNptkc9v0zAUxyMEYmNw4I6QJS5wCLPj2H4-dtXaTeo2VH6Im-U4TuaSxMVOJnbhb8ejpUiI03v2--jzbH2z7CXB7wlh8hRjXAIvGH2UHZOyILkUAh6nHhOWgwRxlD2LcYPTUcjiaXZUSJpmBI6znys_tOjaD_nc1y616-sZurj5OstnHwu0tu3U6dFGdKU71w56GNGyc77X6Mze6jvnQ0R6qNEXHc3U-dYOzqAr1zsT7tHCh16Pzg_ozmk03to0WedU0NPz5WKNZj9cfJ49aXQX7Yt9Pck-L84_zS_y1c3ycj5b5abkdMwrSkEAZ4RwU3MQuIIGpMTcFHUJBIShqfKG8NICAwNQaABZGYkZUEHoSXa589Zeb9Q2uF6He-W1U78vfGiVDqMznVUaONVVbUtGcElsAZW01BJCRcOBSZxcb3eubfDfJxtH1btobNfpwfopKiJBMlbKskzom3_QjZ_CkH6qCkIE4aygD8J3O8oEH2OwzeGBBKuHgNUh4MS-3hunqrf1gfyT6N-V33RobTgA8w9nO4Xa1k2iXv2X2m_5BXgOr2M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2117165230</pqid></control><display><type>article</type><title>Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Karger Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Gao, Yana ; Yu, Hai ; Liu, Yunhui ; Liu, Xiaobai ; Zheng, Jian ; Ma, Jun ; Gong, Wei ; Chen, Jiajia ; Zhao, Lini ; Tian, Yu ; Xue, Yixue</creator><creatorcontrib>Gao, Yana ; Yu, Hai ; Liu, Yunhui ; Liu, Xiaobai ; Zheng, Jian ; Ma, Jun ; Gong, Wei ; Chen, Jiajia ; Zhao, Lini ; Tian, Yu ; Xue, Yixue</creatorcontrib><description>Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and VM formation. Quantitative real-time PCR was performed to determine the expression levels of HOXA-AS2 in glioma samples and glioblastoma cell lines. CD34-periodic acid-Schiff dual-staining was performed to assess VM in glioma samples. CCK-8, transwell, and Matrigel tube formation assays were performed to measure the effects of HOXA-AS2 knockdown on cell viability, migration, invasion, and VM tube formation, respectively. RNA immunoprecipitation, dual-luciferase reporter and Western blot assays were performed to explore the molecular mechanisms underlying the functions of HOXS-AS2 in glioblastoma cells. A nude mouse xenograft model was used to investigate the role of HOXA-AS2 in xenograft glioma growth and VM density. Student's t-tests, one-way ANOVAs followed by Bonferroni posthoc tests, and chi-square tests were used for the statistical analyses. HOXA-AS2 was upregulated in glioma samples and cell lines and was positively correlated with VM. HOXA-AS2 knockdown attenuated cell viability, migration, invasion, and VM formation in glioma cells and inhibited the expression of vascular endothelial-cadherin (VE-cadherin), as well as the expression and activity of matrix metalloproteinase matrix metalloproteinase (MMP)-2 and MMP-9. miR-373 was downregulated in glioma samples and cell lines and suppressed malignancy in glioblastoma cells. HOXA-AS2 bound to miR-373 and negatively regulated its expression. Epidermal growth factor receptor (EGFR), a target of miR-373, increased the expression levels of VE-cadherin, as well as the expression and activity levels of MMP-2 and MMP-9, via activating phosphatidylinositol 3-kinase/serine/threonine kinase pathways. HOXA-AS2 knockdown combined with miR-373 overexpression yielded optimal tumor suppressive effects and the lowest VM density in vivo. HOXA-AS2 knockdown inhibited malignant glioma behaviors and VM formation via the miR-373/EGFR axis.</description><identifier>ISSN: 1015-8987</identifier><identifier>EISSN: 1421-9778</identifier><identifier>DOI: 10.1159/000486253</identifier><identifier>PMID: 29310118</identifier><language>eng</language><publisher>Basel, Switzerland: S. Karger AG</publisher><subject>Animals ; Biotechnology ; Brain - metabolism ; Brain - pathology ; Brain Neoplasms - blood supply ; Brain Neoplasms - metabolism ; Brain Neoplasms - pathology ; Breast cancer ; Cell adhesion &amp; migration ; Cell growth ; Cell Line, Tumor ; Cell Movement ; Cell Proliferation ; EGFR ; Epidermal growth factor ; ErbB Receptors - antagonists &amp; inhibitors ; ErbB Receptors - genetics ; ErbB Receptors - metabolism ; Gene expression ; Glioma ; Glioma - blood supply ; Glioma - metabolism ; Glioma - pathology ; HOXA-AS2 ; Humans ; Kinases ; Long non-coding RNA ; Male ; Matrix Metalloproteinase 2 - metabolism ; Matrix Metalloproteinase 9 - metabolism ; Metastasis ; Mice ; Mice, Inbred BALB C ; Mice, Nude ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; MiR-373 ; Neovascularization, Pathologic ; Phosphatidylinositol 3-Kinases - metabolism ; Prostate cancer ; Retracted Paper ; RNA Interference ; RNA, Long Noncoding - antagonists &amp; inhibitors ; RNA, Long Noncoding - genetics ; RNA, Long Noncoding - metabolism ; Up-Regulation ; Vasculogenic mimicry</subject><ispartof>Cellular physiology and biochemistry, 2018-01, Vol.45 (1), p.131-147</ispartof><rights>2018 The Author(s). Published by S. Karger AG, Basel</rights><rights>2018 The Author(s). Published by S. Karger AG, Basel.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c463t-b3387865116cd6870b8f89906c2d48187c3d486f164e858c882a889bc90583713</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,864,2102,27635,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29310118$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Gao, Yana</creatorcontrib><creatorcontrib>Yu, Hai</creatorcontrib><creatorcontrib>Liu, Yunhui</creatorcontrib><creatorcontrib>Liu, Xiaobai</creatorcontrib><creatorcontrib>Zheng, Jian</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Zhao, Lini</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Xue, Yixue</creatorcontrib><title>Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis</title><title>Cellular physiology and biochemistry</title><addtitle>Cell Physiol Biochem</addtitle><description>Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and VM formation. Quantitative real-time PCR was performed to determine the expression levels of HOXA-AS2 in glioma samples and glioblastoma cell lines. CD34-periodic acid-Schiff dual-staining was performed to assess VM in glioma samples. CCK-8, transwell, and Matrigel tube formation assays were performed to measure the effects of HOXA-AS2 knockdown on cell viability, migration, invasion, and VM tube formation, respectively. RNA immunoprecipitation, dual-luciferase reporter and Western blot assays were performed to explore the molecular mechanisms underlying the functions of HOXS-AS2 in glioblastoma cells. A nude mouse xenograft model was used to investigate the role of HOXA-AS2 in xenograft glioma growth and VM density. Student's t-tests, one-way ANOVAs followed by Bonferroni posthoc tests, and chi-square tests were used for the statistical analyses. HOXA-AS2 was upregulated in glioma samples and cell lines and was positively correlated with VM. HOXA-AS2 knockdown attenuated cell viability, migration, invasion, and VM formation in glioma cells and inhibited the expression of vascular endothelial-cadherin (VE-cadherin), as well as the expression and activity of matrix metalloproteinase matrix metalloproteinase (MMP)-2 and MMP-9. miR-373 was downregulated in glioma samples and cell lines and suppressed malignancy in glioblastoma cells. HOXA-AS2 bound to miR-373 and negatively regulated its expression. Epidermal growth factor receptor (EGFR), a target of miR-373, increased the expression levels of VE-cadherin, as well as the expression and activity levels of MMP-2 and MMP-9, via activating phosphatidylinositol 3-kinase/serine/threonine kinase pathways. HOXA-AS2 knockdown combined with miR-373 overexpression yielded optimal tumor suppressive effects and the lowest VM density in vivo. HOXA-AS2 knockdown inhibited malignant glioma behaviors and VM formation via the miR-373/EGFR axis.</description><subject>Animals</subject><subject>Biotechnology</subject><subject>Brain - metabolism</subject><subject>Brain - pathology</subject><subject>Brain Neoplasms - blood supply</subject><subject>Brain Neoplasms - metabolism</subject><subject>Brain Neoplasms - pathology</subject><subject>Breast cancer</subject><subject>Cell adhesion &amp; migration</subject><subject>Cell growth</subject><subject>Cell Line, Tumor</subject><subject>Cell Movement</subject><subject>Cell Proliferation</subject><subject>EGFR</subject><subject>Epidermal growth factor</subject><subject>ErbB Receptors - antagonists &amp; inhibitors</subject><subject>ErbB Receptors - genetics</subject><subject>ErbB Receptors - metabolism</subject><subject>Gene expression</subject><subject>Glioma</subject><subject>Glioma - blood supply</subject><subject>Glioma - metabolism</subject><subject>Glioma - pathology</subject><subject>HOXA-AS2</subject><subject>Humans</subject><subject>Kinases</subject><subject>Long non-coding RNA</subject><subject>Male</subject><subject>Matrix Metalloproteinase 2 - metabolism</subject><subject>Matrix Metalloproteinase 9 - metabolism</subject><subject>Metastasis</subject><subject>Mice</subject><subject>Mice, Inbred BALB C</subject><subject>Mice, Nude</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>MiR-373</subject><subject>Neovascularization, Pathologic</subject><subject>Phosphatidylinositol 3-Kinases - metabolism</subject><subject>Prostate cancer</subject><subject>Retracted Paper</subject><subject>RNA Interference</subject><subject>RNA, Long Noncoding - antagonists &amp; inhibitors</subject><subject>RNA, Long Noncoding - genetics</subject><subject>RNA, Long Noncoding - metabolism</subject><subject>Up-Regulation</subject><subject>Vasculogenic mimicry</subject><issn>1015-8987</issn><issn>1421-9778</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>M--</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DOA</sourceid><recordid>eNptkc9v0zAUxyMEYmNw4I6QJS5wCLPj2H4-dtXaTeo2VH6Im-U4TuaSxMVOJnbhb8ejpUiI03v2--jzbH2z7CXB7wlh8hRjXAIvGH2UHZOyILkUAh6nHhOWgwRxlD2LcYPTUcjiaXZUSJpmBI6znys_tOjaD_nc1y616-sZurj5OstnHwu0tu3U6dFGdKU71w56GNGyc77X6Mze6jvnQ0R6qNEXHc3U-dYOzqAr1zsT7tHCh16Pzg_ozmk03to0WedU0NPz5WKNZj9cfJ49aXQX7Yt9Pck-L84_zS_y1c3ycj5b5abkdMwrSkEAZ4RwU3MQuIIGpMTcFHUJBIShqfKG8NICAwNQaABZGYkZUEHoSXa589Zeb9Q2uF6He-W1U78vfGiVDqMznVUaONVVbUtGcElsAZW01BJCRcOBSZxcb3eubfDfJxtH1btobNfpwfopKiJBMlbKskzom3_QjZ_CkH6qCkIE4aygD8J3O8oEH2OwzeGBBKuHgNUh4MS-3hunqrf1gfyT6N-V33RobTgA8w9nO4Xa1k2iXv2X2m_5BXgOr2M</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Gao, Yana</creator><creator>Yu, Hai</creator><creator>Liu, Yunhui</creator><creator>Liu, Xiaobai</creator><creator>Zheng, Jian</creator><creator>Ma, Jun</creator><creator>Gong, Wei</creator><creator>Chen, Jiajia</creator><creator>Zhao, Lini</creator><creator>Tian, Yu</creator><creator>Xue, Yixue</creator><general>S. Karger AG</general><general>Cell Physiol Biochem Press GmbH &amp; Co KG</general><scope>M--</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>DOA</scope></search><sort><creationdate>20180101</creationdate><title>Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis</title><author>Gao, Yana ; Yu, Hai ; Liu, Yunhui ; Liu, Xiaobai ; Zheng, Jian ; Ma, Jun ; Gong, Wei ; Chen, Jiajia ; Zhao, Lini ; Tian, Yu ; Xue, Yixue</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c463t-b3387865116cd6870b8f89906c2d48187c3d486f164e858c882a889bc90583713</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biotechnology</topic><topic>Brain - metabolism</topic><topic>Brain - pathology</topic><topic>Brain Neoplasms - blood supply</topic><topic>Brain Neoplasms - metabolism</topic><topic>Brain Neoplasms - pathology</topic><topic>Breast cancer</topic><topic>Cell adhesion &amp; migration</topic><topic>Cell growth</topic><topic>Cell Line, Tumor</topic><topic>Cell Movement</topic><topic>Cell Proliferation</topic><topic>EGFR</topic><topic>Epidermal growth factor</topic><topic>ErbB Receptors - antagonists &amp; inhibitors</topic><topic>ErbB Receptors - genetics</topic><topic>ErbB Receptors - metabolism</topic><topic>Gene expression</topic><topic>Glioma</topic><topic>Glioma - blood supply</topic><topic>Glioma - metabolism</topic><topic>Glioma - pathology</topic><topic>HOXA-AS2</topic><topic>Humans</topic><topic>Kinases</topic><topic>Long non-coding RNA</topic><topic>Male</topic><topic>Matrix Metalloproteinase 2 - metabolism</topic><topic>Matrix Metalloproteinase 9 - metabolism</topic><topic>Metastasis</topic><topic>Mice</topic><topic>Mice, Inbred BALB C</topic><topic>Mice, Nude</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>MiR-373</topic><topic>Neovascularization, Pathologic</topic><topic>Phosphatidylinositol 3-Kinases - metabolism</topic><topic>Prostate cancer</topic><topic>Retracted Paper</topic><topic>RNA Interference</topic><topic>RNA, Long Noncoding - antagonists &amp; inhibitors</topic><topic>RNA, Long Noncoding - genetics</topic><topic>RNA, Long Noncoding - metabolism</topic><topic>Up-Regulation</topic><topic>Vasculogenic mimicry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gao, Yana</creatorcontrib><creatorcontrib>Yu, Hai</creatorcontrib><creatorcontrib>Liu, Yunhui</creatorcontrib><creatorcontrib>Liu, Xiaobai</creatorcontrib><creatorcontrib>Zheng, Jian</creatorcontrib><creatorcontrib>Ma, Jun</creatorcontrib><creatorcontrib>Gong, Wei</creatorcontrib><creatorcontrib>Chen, Jiajia</creatorcontrib><creatorcontrib>Zhao, Lini</creatorcontrib><creatorcontrib>Tian, Yu</creatorcontrib><creatorcontrib>Xue, Yixue</creatorcontrib><collection>Karger Open Access Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cellular physiology and biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gao, Yana</au><au>Yu, Hai</au><au>Liu, Yunhui</au><au>Liu, Xiaobai</au><au>Zheng, Jian</au><au>Ma, Jun</au><au>Gong, Wei</au><au>Chen, Jiajia</au><au>Zhao, Lini</au><au>Tian, Yu</au><au>Xue, Yixue</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis</atitle><jtitle>Cellular physiology and biochemistry</jtitle><addtitle>Cell Physiol Biochem</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>45</volume><issue>1</issue><spage>131</spage><epage>147</epage><pages>131-147</pages><issn>1015-8987</issn><eissn>1421-9778</eissn><abstract>Vasculogenic mimicry (VM) has been reported to be a novel glioma neovascularization process. Anti-VM therapy provides new insight into glioma clinical management. In this study, we revealed the role of the long non-coding RNA HOXA cluster antisense RNA 2 (HOXA-AS2) in malignant glioma behaviors and VM formation. Quantitative real-time PCR was performed to determine the expression levels of HOXA-AS2 in glioma samples and glioblastoma cell lines. CD34-periodic acid-Schiff dual-staining was performed to assess VM in glioma samples. CCK-8, transwell, and Matrigel tube formation assays were performed to measure the effects of HOXA-AS2 knockdown on cell viability, migration, invasion, and VM tube formation, respectively. RNA immunoprecipitation, dual-luciferase reporter and Western blot assays were performed to explore the molecular mechanisms underlying the functions of HOXS-AS2 in glioblastoma cells. A nude mouse xenograft model was used to investigate the role of HOXA-AS2 in xenograft glioma growth and VM density. Student's t-tests, one-way ANOVAs followed by Bonferroni posthoc tests, and chi-square tests were used for the statistical analyses. HOXA-AS2 was upregulated in glioma samples and cell lines and was positively correlated with VM. HOXA-AS2 knockdown attenuated cell viability, migration, invasion, and VM formation in glioma cells and inhibited the expression of vascular endothelial-cadherin (VE-cadherin), as well as the expression and activity of matrix metalloproteinase matrix metalloproteinase (MMP)-2 and MMP-9. miR-373 was downregulated in glioma samples and cell lines and suppressed malignancy in glioblastoma cells. HOXA-AS2 bound to miR-373 and negatively regulated its expression. Epidermal growth factor receptor (EGFR), a target of miR-373, increased the expression levels of VE-cadherin, as well as the expression and activity levels of MMP-2 and MMP-9, via activating phosphatidylinositol 3-kinase/serine/threonine kinase pathways. HOXA-AS2 knockdown combined with miR-373 overexpression yielded optimal tumor suppressive effects and the lowest VM density in vivo. HOXA-AS2 knockdown inhibited malignant glioma behaviors and VM formation via the miR-373/EGFR axis.</abstract><cop>Basel, Switzerland</cop><pub>S. Karger AG</pub><pmid>29310118</pmid><doi>10.1159/000486253</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1015-8987
ispartof Cellular physiology and biochemistry, 2018-01, Vol.45 (1), p.131-147
issn 1015-8987
1421-9778
language eng
recordid cdi_proquest_miscellaneous_1989554944
source MEDLINE; DOAJ Directory of Open Access Journals; Karger Open Access Journals; EZB-FREE-00999 freely available EZB journals
subjects Animals
Biotechnology
Brain - metabolism
Brain - pathology
Brain Neoplasms - blood supply
Brain Neoplasms - metabolism
Brain Neoplasms - pathology
Breast cancer
Cell adhesion & migration
Cell growth
Cell Line, Tumor
Cell Movement
Cell Proliferation
EGFR
Epidermal growth factor
ErbB Receptors - antagonists & inhibitors
ErbB Receptors - genetics
ErbB Receptors - metabolism
Gene expression
Glioma
Glioma - blood supply
Glioma - metabolism
Glioma - pathology
HOXA-AS2
Humans
Kinases
Long non-coding RNA
Male
Matrix Metalloproteinase 2 - metabolism
Matrix Metalloproteinase 9 - metabolism
Metastasis
Mice
Mice, Inbred BALB C
Mice, Nude
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
MiR-373
Neovascularization, Pathologic
Phosphatidylinositol 3-Kinases - metabolism
Prostate cancer
Retracted Paper
RNA Interference
RNA, Long Noncoding - antagonists & inhibitors
RNA, Long Noncoding - genetics
RNA, Long Noncoding - metabolism
Up-Regulation
Vasculogenic mimicry
title Long Non-Coding RNA HOXA-AS2 Regulates Malignant Glioma Behaviors and Vasculogenic Mimicry Formation via the MiR-373/EGFR Axis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T18%3A00%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Long%20Non-Coding%20RNA%20HOXA-AS2%20Regulates%20Malignant%20Glioma%20Behaviors%20and%20Vasculogenic%20Mimicry%20Formation%20via%20the%20MiR-373/EGFR%20Axis&rft.jtitle=Cellular%20physiology%20and%20biochemistry&rft.au=Gao,%20Yana&rft.date=2018-01-01&rft.volume=45&rft.issue=1&rft.spage=131&rft.epage=147&rft.pages=131-147&rft.issn=1015-8987&rft.eissn=1421-9778&rft_id=info:doi/10.1159/000486253&rft_dat=%3Cproquest_pubme%3E2117165230%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2117165230&rft_id=info:pmid/29310118&rft_doaj_id=oai_doaj_org_article_a863abde451041e28b9e3e1137f68590&rfr_iscdi=true