Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling
The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, min...
Gespeichert in:
Veröffentlicht in: | Environmental science & technology 2018-02, Vol.52 (4), p.1919-1928 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1928 |
---|---|
container_issue | 4 |
container_start_page | 1919 |
container_title | Environmental science & technology |
container_volume | 52 |
creator | Imseng, Martin Wiggenhauser, Matthias Keller, Armin Müller, Michael Rehkämper, Mark Murphy, Katy Kreissig, Katharina Frossard, Emmanuel Wilcke, Wolfgang Bigalke, Moritz |
description | The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils. |
doi_str_mv | 10.1021/acs.est.7b05439 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989542613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989542613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</originalsourceid><addsrcrecordid>eNp1kcFr2zAUxsVYWdJ2592GYJdB6_RJtiSrNxOaLVBoIS3sZmRZTlxsy5PkQ9k_X6XJchjs9ODx-7738T6EvhBYEKDkRmm_MD4sRAUsS-UHNCeMQsJyRj6iOQBJE5nyXzN07v0LANAU8k9oRmWcuaRz9GelgsG2wcsatwMutq7VUxcmpzq8sW3nb3GBN0FVncFrb4MdDS7G0VmldzhYXAxh5-xot2ZoNV73o9Lh-l2JV9b1KrR2uMZqqN93yWOnhoCXr7prh-0lOmtU583n47xAz6u7p-XP5P7hx3pZ3CeKAQsJEVzUGa200NTQimVMCyqAMCIoB96YrJF1zYnM0pSCNBUIoJWoOTcip4anF-j7wTfG_j3Fd5V967XpYhZjJ18SmUuWUU7SiH77B32xkxtiupICybkARvaGNwdKO-u9M005urZX7rUkUO57KWMv5V597CUqvh59p6o39Yn_W0QErg7AXnm6-T-7N0Hvlo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018670516</pqid></control><display><type>article</type><title>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</title><source>ACS Publications</source><creator>Imseng, Martin ; Wiggenhauser, Matthias ; Keller, Armin ; Müller, Michael ; Rehkämper, Mark ; Murphy, Katy ; Kreissig, Katharina ; Frossard, Emmanuel ; Wilcke, Wolfgang ; Bigalke, Moritz</creator><creatorcontrib>Imseng, Martin ; Wiggenhauser, Matthias ; Keller, Armin ; Müller, Michael ; Rehkämper, Mark ; Murphy, Katy ; Kreissig, Katharina ; Frossard, Emmanuel ; Wilcke, Wolfgang ; Bigalke, Moritz</creatorcontrib><description>The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b05439</identifier><identifier>PMID: 29308892</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural land ; Agrochemicals ; Animal wastes ; Anthropogenic factors ; Arable land ; Atmospheric pollution deposition ; Barley ; Cadmium ; Crops ; Cultivation ; Cycles ; Fertilizers ; Fluxes ; Fractionation ; Grain cultivation ; Human influences ; Hydrology ; Hydroxyapatite ; Manures ; Plant extracts ; Seepage ; Soil fertility ; Soil formation ; Soils ; Stable isotopes ; Subsoils ; Topsoil ; Water seepage ; Weathering ; Wheat</subject><ispartof>Environmental science & technology, 2018-02, Vol.52 (4), p.1919-1928</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</citedby><cites>FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</cites><orcidid>0000-0002-4977-4205 ; 0000-0002-6793-6159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b05439$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b05439$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29308892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imseng, Martin</creatorcontrib><creatorcontrib>Wiggenhauser, Matthias</creatorcontrib><creatorcontrib>Keller, Armin</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Rehkämper, Mark</creatorcontrib><creatorcontrib>Murphy, Katy</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Frossard, Emmanuel</creatorcontrib><creatorcontrib>Wilcke, Wolfgang</creatorcontrib><creatorcontrib>Bigalke, Moritz</creatorcontrib><title>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</title><title>Environmental science & technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.</description><subject>Agricultural land</subject><subject>Agrochemicals</subject><subject>Animal wastes</subject><subject>Anthropogenic factors</subject><subject>Arable land</subject><subject>Atmospheric pollution deposition</subject><subject>Barley</subject><subject>Cadmium</subject><subject>Crops</subject><subject>Cultivation</subject><subject>Cycles</subject><subject>Fertilizers</subject><subject>Fluxes</subject><subject>Fractionation</subject><subject>Grain cultivation</subject><subject>Human influences</subject><subject>Hydrology</subject><subject>Hydroxyapatite</subject><subject>Manures</subject><subject>Plant extracts</subject><subject>Seepage</subject><subject>Soil fertility</subject><subject>Soil formation</subject><subject>Soils</subject><subject>Stable isotopes</subject><subject>Subsoils</subject><subject>Topsoil</subject><subject>Water seepage</subject><subject>Weathering</subject><subject>Wheat</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFr2zAUxsVYWdJ2592GYJdB6_RJtiSrNxOaLVBoIS3sZmRZTlxsy5PkQ9k_X6XJchjs9ODx-7738T6EvhBYEKDkRmm_MD4sRAUsS-UHNCeMQsJyRj6iOQBJE5nyXzN07v0LANAU8k9oRmWcuaRz9GelgsG2wcsatwMutq7VUxcmpzq8sW3nb3GBN0FVncFrb4MdDS7G0VmldzhYXAxh5-xot2ZoNV73o9Lh-l2JV9b1KrR2uMZqqN93yWOnhoCXr7prh-0lOmtU583n47xAz6u7p-XP5P7hx3pZ3CeKAQsJEVzUGa200NTQimVMCyqAMCIoB96YrJF1zYnM0pSCNBUIoJWoOTcip4anF-j7wTfG_j3Fd5V967XpYhZjJ18SmUuWUU7SiH77B32xkxtiupICybkARvaGNwdKO-u9M005urZX7rUkUO57KWMv5V597CUqvh59p6o39Yn_W0QErg7AXnm6-T-7N0Hvlo0</recordid><startdate>20180220</startdate><enddate>20180220</enddate><creator>Imseng, Martin</creator><creator>Wiggenhauser, Matthias</creator><creator>Keller, Armin</creator><creator>Müller, Michael</creator><creator>Rehkämper, Mark</creator><creator>Murphy, Katy</creator><creator>Kreissig, Katharina</creator><creator>Frossard, Emmanuel</creator><creator>Wilcke, Wolfgang</creator><creator>Bigalke, Moritz</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4977-4205</orcidid><orcidid>https://orcid.org/0000-0002-6793-6159</orcidid></search><sort><creationdate>20180220</creationdate><title>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</title><author>Imseng, Martin ; Wiggenhauser, Matthias ; Keller, Armin ; Müller, Michael ; Rehkämper, Mark ; Murphy, Katy ; Kreissig, Katharina ; Frossard, Emmanuel ; Wilcke, Wolfgang ; Bigalke, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural land</topic><topic>Agrochemicals</topic><topic>Animal wastes</topic><topic>Anthropogenic factors</topic><topic>Arable land</topic><topic>Atmospheric pollution deposition</topic><topic>Barley</topic><topic>Cadmium</topic><topic>Crops</topic><topic>Cultivation</topic><topic>Cycles</topic><topic>Fertilizers</topic><topic>Fluxes</topic><topic>Fractionation</topic><topic>Grain cultivation</topic><topic>Human influences</topic><topic>Hydrology</topic><topic>Hydroxyapatite</topic><topic>Manures</topic><topic>Plant extracts</topic><topic>Seepage</topic><topic>Soil fertility</topic><topic>Soil formation</topic><topic>Soils</topic><topic>Stable isotopes</topic><topic>Subsoils</topic><topic>Topsoil</topic><topic>Water seepage</topic><topic>Weathering</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imseng, Martin</creatorcontrib><creatorcontrib>Wiggenhauser, Matthias</creatorcontrib><creatorcontrib>Keller, Armin</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Rehkämper, Mark</creatorcontrib><creatorcontrib>Murphy, Katy</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Frossard, Emmanuel</creatorcontrib><creatorcontrib>Wilcke, Wolfgang</creatorcontrib><creatorcontrib>Bigalke, Moritz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science & technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imseng, Martin</au><au>Wiggenhauser, Matthias</au><au>Keller, Armin</au><au>Müller, Michael</au><au>Rehkämper, Mark</au><au>Murphy, Katy</au><au>Kreissig, Katharina</au><au>Frossard, Emmanuel</au><au>Wilcke, Wolfgang</au><au>Bigalke, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</atitle><jtitle>Environmental science & technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-02-20</date><risdate>2018</risdate><volume>52</volume><issue>4</issue><spage>1919</spage><epage>1928</epage><pages>1919-1928</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29308892</pmid><doi>10.1021/acs.est.7b05439</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4977-4205</orcidid><orcidid>https://orcid.org/0000-0002-6793-6159</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0013-936X |
ispartof | Environmental science & technology, 2018-02, Vol.52 (4), p.1919-1928 |
issn | 0013-936X 1520-5851 |
language | eng |
recordid | cdi_proquest_miscellaneous_1989542613 |
source | ACS Publications |
subjects | Agricultural land Agrochemicals Animal wastes Anthropogenic factors Arable land Atmospheric pollution deposition Barley Cadmium Crops Cultivation Cycles Fertilizers Fluxes Fractionation Grain cultivation Human influences Hydrology Hydroxyapatite Manures Plant extracts Seepage Soil fertility Soil formation Soils Stable isotopes Subsoils Topsoil Water seepage Weathering Wheat |
title | Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fate%20of%20Cd%20in%20Agricultural%20Soils:%20A%20Stable%20Isotope%20Approach%20to%20Anthropogenic%20Impact,%20Soil%20Formation,%20and%20Soil-Plant%20Cycling&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Imseng,%20Martin&rft.date=2018-02-20&rft.volume=52&rft.issue=4&rft.spage=1919&rft.epage=1928&rft.pages=1919-1928&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b05439&rft_dat=%3Cproquest_cross%3E1989542613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2018670516&rft_id=info:pmid/29308892&rfr_iscdi=true |