Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling

The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, min...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Environmental science & technology 2018-02, Vol.52 (4), p.1919-1928
Hauptverfasser: Imseng, Martin, Wiggenhauser, Matthias, Keller, Armin, Müller, Michael, Rehkämper, Mark, Murphy, Katy, Kreissig, Katharina, Frossard, Emmanuel, Wilcke, Wolfgang, Bigalke, Moritz
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1928
container_issue 4
container_start_page 1919
container_title Environmental science & technology
container_volume 52
creator Imseng, Martin
Wiggenhauser, Matthias
Keller, Armin
Müller, Michael
Rehkämper, Mark
Murphy, Katy
Kreissig, Katharina
Frossard, Emmanuel
Wilcke, Wolfgang
Bigalke, Moritz
description The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.
doi_str_mv 10.1021/acs.est.7b05439
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1989542613</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1989542613</sourcerecordid><originalsourceid>FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</originalsourceid><addsrcrecordid>eNp1kcFr2zAUxsVYWdJ2592GYJdB6_RJtiSrNxOaLVBoIS3sZmRZTlxsy5PkQ9k_X6XJchjs9ODx-7738T6EvhBYEKDkRmm_MD4sRAUsS-UHNCeMQsJyRj6iOQBJE5nyXzN07v0LANAU8k9oRmWcuaRz9GelgsG2wcsatwMutq7VUxcmpzq8sW3nb3GBN0FVncFrb4MdDS7G0VmldzhYXAxh5-xot2ZoNV73o9Lh-l2JV9b1KrR2uMZqqN93yWOnhoCXr7prh-0lOmtU583n47xAz6u7p-XP5P7hx3pZ3CeKAQsJEVzUGa200NTQimVMCyqAMCIoB96YrJF1zYnM0pSCNBUIoJWoOTcip4anF-j7wTfG_j3Fd5V967XpYhZjJ18SmUuWUU7SiH77B32xkxtiupICybkARvaGNwdKO-u9M005urZX7rUkUO57KWMv5V597CUqvh59p6o39Yn_W0QErg7AXnm6-T-7N0Hvlo0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2018670516</pqid></control><display><type>article</type><title>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</title><source>ACS Publications</source><creator>Imseng, Martin ; Wiggenhauser, Matthias ; Keller, Armin ; Müller, Michael ; Rehkämper, Mark ; Murphy, Katy ; Kreissig, Katharina ; Frossard, Emmanuel ; Wilcke, Wolfgang ; Bigalke, Moritz</creator><creatorcontrib>Imseng, Martin ; Wiggenhauser, Matthias ; Keller, Armin ; Müller, Michael ; Rehkämper, Mark ; Murphy, Katy ; Kreissig, Katharina ; Frossard, Emmanuel ; Wilcke, Wolfgang ; Bigalke, Moritz</creatorcontrib><description>The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.</description><identifier>ISSN: 0013-936X</identifier><identifier>EISSN: 1520-5851</identifier><identifier>DOI: 10.1021/acs.est.7b05439</identifier><identifier>PMID: 29308892</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Agricultural land ; Agrochemicals ; Animal wastes ; Anthropogenic factors ; Arable land ; Atmospheric pollution deposition ; Barley ; Cadmium ; Crops ; Cultivation ; Cycles ; Fertilizers ; Fluxes ; Fractionation ; Grain cultivation ; Human influences ; Hydrology ; Hydroxyapatite ; Manures ; Plant extracts ; Seepage ; Soil fertility ; Soil formation ; Soils ; Stable isotopes ; Subsoils ; Topsoil ; Water seepage ; Weathering ; Wheat</subject><ispartof>Environmental science &amp; technology, 2018-02, Vol.52 (4), p.1919-1928</ispartof><rights>Copyright © 2018 American Chemical Society</rights><rights>Copyright American Chemical Society Feb 20, 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</citedby><cites>FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</cites><orcidid>0000-0002-4977-4205 ; 0000-0002-6793-6159</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.est.7b05439$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.est.7b05439$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29308892$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Imseng, Martin</creatorcontrib><creatorcontrib>Wiggenhauser, Matthias</creatorcontrib><creatorcontrib>Keller, Armin</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Rehkämper, Mark</creatorcontrib><creatorcontrib>Murphy, Katy</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Frossard, Emmanuel</creatorcontrib><creatorcontrib>Wilcke, Wolfgang</creatorcontrib><creatorcontrib>Bigalke, Moritz</creatorcontrib><title>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</title><title>Environmental science &amp; technology</title><addtitle>Environ. Sci. Technol</addtitle><description>The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.</description><subject>Agricultural land</subject><subject>Agrochemicals</subject><subject>Animal wastes</subject><subject>Anthropogenic factors</subject><subject>Arable land</subject><subject>Atmospheric pollution deposition</subject><subject>Barley</subject><subject>Cadmium</subject><subject>Crops</subject><subject>Cultivation</subject><subject>Cycles</subject><subject>Fertilizers</subject><subject>Fluxes</subject><subject>Fractionation</subject><subject>Grain cultivation</subject><subject>Human influences</subject><subject>Hydrology</subject><subject>Hydroxyapatite</subject><subject>Manures</subject><subject>Plant extracts</subject><subject>Seepage</subject><subject>Soil fertility</subject><subject>Soil formation</subject><subject>Soils</subject><subject>Stable isotopes</subject><subject>Subsoils</subject><subject>Topsoil</subject><subject>Water seepage</subject><subject>Weathering</subject><subject>Wheat</subject><issn>0013-936X</issn><issn>1520-5851</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kcFr2zAUxsVYWdJ2592GYJdB6_RJtiSrNxOaLVBoIS3sZmRZTlxsy5PkQ9k_X6XJchjs9ODx-7738T6EvhBYEKDkRmm_MD4sRAUsS-UHNCeMQsJyRj6iOQBJE5nyXzN07v0LANAU8k9oRmWcuaRz9GelgsG2wcsatwMutq7VUxcmpzq8sW3nb3GBN0FVncFrb4MdDS7G0VmldzhYXAxh5-xot2ZoNV73o9Lh-l2JV9b1KrR2uMZqqN93yWOnhoCXr7prh-0lOmtU583n47xAz6u7p-XP5P7hx3pZ3CeKAQsJEVzUGa200NTQimVMCyqAMCIoB96YrJF1zYnM0pSCNBUIoJWoOTcip4anF-j7wTfG_j3Fd5V967XpYhZjJ18SmUuWUU7SiH77B32xkxtiupICybkARvaGNwdKO-u9M005urZX7rUkUO57KWMv5V597CUqvh59p6o39Yn_W0QErg7AXnm6-T-7N0Hvlo0</recordid><startdate>20180220</startdate><enddate>20180220</enddate><creator>Imseng, Martin</creator><creator>Wiggenhauser, Matthias</creator><creator>Keller, Armin</creator><creator>Müller, Michael</creator><creator>Rehkämper, Mark</creator><creator>Murphy, Katy</creator><creator>Kreissig, Katharina</creator><creator>Frossard, Emmanuel</creator><creator>Wilcke, Wolfgang</creator><creator>Bigalke, Moritz</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7ST</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>SOI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4977-4205</orcidid><orcidid>https://orcid.org/0000-0002-6793-6159</orcidid></search><sort><creationdate>20180220</creationdate><title>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</title><author>Imseng, Martin ; Wiggenhauser, Matthias ; Keller, Armin ; Müller, Michael ; Rehkämper, Mark ; Murphy, Katy ; Kreissig, Katharina ; Frossard, Emmanuel ; Wilcke, Wolfgang ; Bigalke, Moritz</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a505t-1767d42bc7c2e2b545c727015172606fe4f9dd619433209eb0702b7d66e782e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agricultural land</topic><topic>Agrochemicals</topic><topic>Animal wastes</topic><topic>Anthropogenic factors</topic><topic>Arable land</topic><topic>Atmospheric pollution deposition</topic><topic>Barley</topic><topic>Cadmium</topic><topic>Crops</topic><topic>Cultivation</topic><topic>Cycles</topic><topic>Fertilizers</topic><topic>Fluxes</topic><topic>Fractionation</topic><topic>Grain cultivation</topic><topic>Human influences</topic><topic>Hydrology</topic><topic>Hydroxyapatite</topic><topic>Manures</topic><topic>Plant extracts</topic><topic>Seepage</topic><topic>Soil fertility</topic><topic>Soil formation</topic><topic>Soils</topic><topic>Stable isotopes</topic><topic>Subsoils</topic><topic>Topsoil</topic><topic>Water seepage</topic><topic>Weathering</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Imseng, Martin</creatorcontrib><creatorcontrib>Wiggenhauser, Matthias</creatorcontrib><creatorcontrib>Keller, Armin</creatorcontrib><creatorcontrib>Müller, Michael</creatorcontrib><creatorcontrib>Rehkämper, Mark</creatorcontrib><creatorcontrib>Murphy, Katy</creatorcontrib><creatorcontrib>Kreissig, Katharina</creatorcontrib><creatorcontrib>Frossard, Emmanuel</creatorcontrib><creatorcontrib>Wilcke, Wolfgang</creatorcontrib><creatorcontrib>Bigalke, Moritz</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Environmental science &amp; technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Imseng, Martin</au><au>Wiggenhauser, Matthias</au><au>Keller, Armin</au><au>Müller, Michael</au><au>Rehkämper, Mark</au><au>Murphy, Katy</au><au>Kreissig, Katharina</au><au>Frossard, Emmanuel</au><au>Wilcke, Wolfgang</au><au>Bigalke, Moritz</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling</atitle><jtitle>Environmental science &amp; technology</jtitle><addtitle>Environ. Sci. Technol</addtitle><date>2018-02-20</date><risdate>2018</risdate><volume>52</volume><issue>4</issue><spage>1919</spage><epage>1928</epage><pages>1919-1928</pages><issn>0013-936X</issn><eissn>1520-5851</eissn><abstract>The application of mineral phosphate (P) fertilizers leads to an unintended Cd input into agricultural systems, which might affect soil fertility and quality of crops. The Cd fluxes at three arable sites in Switzerland were determined by a detailed analysis of all inputs (atmospheric deposition, mineral P fertilizers, manure, and weathering) and outputs (seepage water, wheat and barley harvest) during one hydrological year. The most important inputs were mineral P fertilizers (0.49 to 0.57 g Cd ha–1 yr–1) and manure (0.20 to 0.91 g Cd ha–1 yr–1). Mass balances revealed net Cd losses for cultivation of wheat (−0.01 to −0.49 g Cd ha–1 yr–1) but net accumulations for that of barley (+0.18 to +0.71 g Cd ha–1 yr–1). To trace Cd sources and redistribution processes in the soils, we used natural variations in the Cd stable isotope compositions. Cadmium in seepage water (δ114/110Cd = 0.39 to 0.79‰) and plant harvest (0.27 to 0.94‰) was isotopically heavier than in soil (−0.21 to 0.14‰). Consequently, parent material weathering shifted bulk soil isotope compositions to lighter signals following a Rayleigh fractionation process (ε ≈ 0.16). Furthermore, soil-plant cycling extracted isotopically heavy Cd from the subsoil and moved it to the topsoil. These long-term processes and not anthropogenic inputs determined the Cd distribution in our soils.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29308892</pmid><doi>10.1021/acs.est.7b05439</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-4977-4205</orcidid><orcidid>https://orcid.org/0000-0002-6793-6159</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0013-936X
ispartof Environmental science & technology, 2018-02, Vol.52 (4), p.1919-1928
issn 0013-936X
1520-5851
language eng
recordid cdi_proquest_miscellaneous_1989542613
source ACS Publications
subjects Agricultural land
Agrochemicals
Animal wastes
Anthropogenic factors
Arable land
Atmospheric pollution deposition
Barley
Cadmium
Crops
Cultivation
Cycles
Fertilizers
Fluxes
Fractionation
Grain cultivation
Human influences
Hydrology
Hydroxyapatite
Manures
Plant extracts
Seepage
Soil fertility
Soil formation
Soils
Stable isotopes
Subsoils
Topsoil
Water seepage
Weathering
Wheat
title Fate of Cd in Agricultural Soils: A Stable Isotope Approach to Anthropogenic Impact, Soil Formation, and Soil-Plant Cycling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T14%3A08%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fate%20of%20Cd%20in%20Agricultural%20Soils:%20A%20Stable%20Isotope%20Approach%20to%20Anthropogenic%20Impact,%20Soil%20Formation,%20and%20Soil-Plant%20Cycling&rft.jtitle=Environmental%20science%20&%20technology&rft.au=Imseng,%20Martin&rft.date=2018-02-20&rft.volume=52&rft.issue=4&rft.spage=1919&rft.epage=1928&rft.pages=1919-1928&rft.issn=0013-936X&rft.eissn=1520-5851&rft_id=info:doi/10.1021/acs.est.7b05439&rft_dat=%3Cproquest_cross%3E1989542613%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2018670516&rft_id=info:pmid/29308892&rfr_iscdi=true