Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake

We introduce the Bayesian calibration of process-based models to address the urgent need for robust modeling tools that can effectively support environmental management. The proposed framework aims to combine the advantageous features of both mechanistic and statistical approaches. Models that are b...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Ecological modelling 2007-11, Vol.208 (2), p.215-229
Hauptverfasser: Arhonditsis, George B., Qian, Song S., Stow, Craig A., Lamon, E. Conrad, Reckhow, Kenneth H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 229
container_issue 2
container_start_page 215
container_title Ecological modelling
container_volume 208
creator Arhonditsis, George B.
Qian, Song S.
Stow, Craig A.
Lamon, E. Conrad
Reckhow, Kenneth H.
description We introduce the Bayesian calibration of process-based models to address the urgent need for robust modeling tools that can effectively support environmental management. The proposed framework aims to combine the advantageous features of both mechanistic and statistical approaches. Models that are based on mechanistic understanding yet remain within the bounds of data-based parameter estimation can accommodate rigorous and complete error analysis. The incorporation of mechanism improves the confidence in predictions made for a variety of conditions, while the statistical methods provide an empirical basis for parameter estimation and allow for estimates of predictive uncertainty. Our illustration focuses on eutrophication modeling but the proposed methodological framework can be easily transferred to a wide variety of disciplines (e.g., hydrology, ecotoxicology, air pollution). We examine the advantages of the Bayesian calibration using a four state variable (phosphate–detritus–phytoplankton–zooplankton) model and the mesotrophic Lake Washington (Washington State, USA) as a case study. Prior parameter distributions were formed on the basis of literature information, while Markov chain Monte Carlo simulations provided a convenient means for approximating the posterior parameter distributions. The model reproduces the key epilimnetic temporal patterns of the system and provides realistic estimates of predictive uncertainty for water quality variables of environmental interest. Finally, we highlight the benefits of Bayesian parameter estimation, such as the quantification of uncertainty in model predictions, optimization of the sampling design of monitoring programs using value of information concepts from decision theory, alignment with the policy practice of adaptive management, and expression of model outputs as probability distributions, that are perfectly suited for stakeholders and policy makers when making decisions for sustainable environmental management.
doi_str_mv 10.1016/j.ecolmodel.2007.05.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19881899</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0304380007003055</els_id><sourcerecordid>14818471</sourcerecordid><originalsourceid>FETCH-LOGICAL-c407t-361c0a8bb9d4722b57553697c849c6ed34c0da12dc06c0206a14a073d771e2233</originalsourceid><addsrcrecordid>eNqFkTtv3DAQhAkjBnJx8hvCJukkL6kHxXQXwy_AgJu4Jihyz-FZEhWuLoD_vXm5c1y62ubbndkZxr4KKAWI9nxboovDGD0OpQRQJTQlSDhhK9EpWSiQ7Qe2ggrqouoAPrJPRFsAELKTK7Zc7pYU59_B2SXEiadAT9wSIdGI08J3FKZH_tM-IwU7cWeH0KcDGjd8TtFlsugtoef_PNAPvp7n4fXeErnlI1I8qvDBPuFndrqxA-GX4zxjD1eXvy5uirv769uL9V3halBLUbXCge36XvtaSdk3qmmqVivX1dq16KvagbdCegetyy-3VtQWVOWVEihlVZ2x74e72eefHdJixkAOh8FOGHdkhO460Wn9PlhnrlYig-oAuhSJEm7MnMJo07MRYPZ1mK35X4fZ12GgMdlb3vx2lLCUU9wkO7lAb-ta6EbqPbc-cDlK_BswGXIBJ4c-JHSL8TG8q_UCP1emRA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>14818471</pqid></control><display><type>article</type><title>Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake</title><source>Access via ScienceDirect (Elsevier)</source><creator>Arhonditsis, George B. ; Qian, Song S. ; Stow, Craig A. ; Lamon, E. Conrad ; Reckhow, Kenneth H.</creator><creatorcontrib>Arhonditsis, George B. ; Qian, Song S. ; Stow, Craig A. ; Lamon, E. Conrad ; Reckhow, Kenneth H.</creatorcontrib><description>We introduce the Bayesian calibration of process-based models to address the urgent need for robust modeling tools that can effectively support environmental management. The proposed framework aims to combine the advantageous features of both mechanistic and statistical approaches. Models that are based on mechanistic understanding yet remain within the bounds of data-based parameter estimation can accommodate rigorous and complete error analysis. The incorporation of mechanism improves the confidence in predictions made for a variety of conditions, while the statistical methods provide an empirical basis for parameter estimation and allow for estimates of predictive uncertainty. Our illustration focuses on eutrophication modeling but the proposed methodological framework can be easily transferred to a wide variety of disciplines (e.g., hydrology, ecotoxicology, air pollution). We examine the advantages of the Bayesian calibration using a four state variable (phosphate–detritus–phytoplankton–zooplankton) model and the mesotrophic Lake Washington (Washington State, USA) as a case study. Prior parameter distributions were formed on the basis of literature information, while Markov chain Monte Carlo simulations provided a convenient means for approximating the posterior parameter distributions. The model reproduces the key epilimnetic temporal patterns of the system and provides realistic estimates of predictive uncertainty for water quality variables of environmental interest. Finally, we highlight the benefits of Bayesian parameter estimation, such as the quantification of uncertainty in model predictions, optimization of the sampling design of monitoring programs using value of information concepts from decision theory, alignment with the policy practice of adaptive management, and expression of model outputs as probability distributions, that are perfectly suited for stakeholders and policy makers when making decisions for sustainable environmental management.</description><identifier>ISSN: 0304-3800</identifier><identifier>EISSN: 1872-7026</identifier><identifier>DOI: 10.1016/j.ecolmodel.2007.05.020</identifier><identifier>CODEN: ECMODT</identifier><language>eng</language><publisher>Amsterdam: Elsevier B.V</publisher><subject>Adaptive management implementation ; Animal and plant ecology ; Animal, plant and microbial ecology ; Bayesian calibration ; Biological and medical sciences ; Environmental management ; Eutrophication ; Fresh water ecosystems ; Freshwater ; Fundamental and applied biological sciences. Psychology ; General aspects. Techniques ; Mechanistic models ; Methods and techniques (sampling, tagging, trapping, modelling...) ; Plankton dynamics ; Risk assessment ; Synecology</subject><ispartof>Ecological modelling, 2007-11, Vol.208 (2), p.215-229</ispartof><rights>2007 Elsevier B.V.</rights><rights>2007 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c407t-361c0a8bb9d4722b57553697c849c6ed34c0da12dc06c0206a14a073d771e2233</citedby><cites>FETCH-LOGICAL-c407t-361c0a8bb9d4722b57553697c849c6ed34c0da12dc06c0206a14a073d771e2233</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ecolmodel.2007.05.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19195290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Arhonditsis, George B.</creatorcontrib><creatorcontrib>Qian, Song S.</creatorcontrib><creatorcontrib>Stow, Craig A.</creatorcontrib><creatorcontrib>Lamon, E. Conrad</creatorcontrib><creatorcontrib>Reckhow, Kenneth H.</creatorcontrib><title>Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake</title><title>Ecological modelling</title><description>We introduce the Bayesian calibration of process-based models to address the urgent need for robust modeling tools that can effectively support environmental management. The proposed framework aims to combine the advantageous features of both mechanistic and statistical approaches. Models that are based on mechanistic understanding yet remain within the bounds of data-based parameter estimation can accommodate rigorous and complete error analysis. The incorporation of mechanism improves the confidence in predictions made for a variety of conditions, while the statistical methods provide an empirical basis for parameter estimation and allow for estimates of predictive uncertainty. Our illustration focuses on eutrophication modeling but the proposed methodological framework can be easily transferred to a wide variety of disciplines (e.g., hydrology, ecotoxicology, air pollution). We examine the advantages of the Bayesian calibration using a four state variable (phosphate–detritus–phytoplankton–zooplankton) model and the mesotrophic Lake Washington (Washington State, USA) as a case study. Prior parameter distributions were formed on the basis of literature information, while Markov chain Monte Carlo simulations provided a convenient means for approximating the posterior parameter distributions. The model reproduces the key epilimnetic temporal patterns of the system and provides realistic estimates of predictive uncertainty for water quality variables of environmental interest. Finally, we highlight the benefits of Bayesian parameter estimation, such as the quantification of uncertainty in model predictions, optimization of the sampling design of monitoring programs using value of information concepts from decision theory, alignment with the policy practice of adaptive management, and expression of model outputs as probability distributions, that are perfectly suited for stakeholders and policy makers when making decisions for sustainable environmental management.</description><subject>Adaptive management implementation</subject><subject>Animal and plant ecology</subject><subject>Animal, plant and microbial ecology</subject><subject>Bayesian calibration</subject><subject>Biological and medical sciences</subject><subject>Environmental management</subject><subject>Eutrophication</subject><subject>Fresh water ecosystems</subject><subject>Freshwater</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Techniques</subject><subject>Mechanistic models</subject><subject>Methods and techniques (sampling, tagging, trapping, modelling...)</subject><subject>Plankton dynamics</subject><subject>Risk assessment</subject><subject>Synecology</subject><issn>0304-3800</issn><issn>1872-7026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><recordid>eNqFkTtv3DAQhAkjBnJx8hvCJukkL6kHxXQXwy_AgJu4Jihyz-FZEhWuLoD_vXm5c1y62ubbndkZxr4KKAWI9nxboovDGD0OpQRQJTQlSDhhK9EpWSiQ7Qe2ggrqouoAPrJPRFsAELKTK7Zc7pYU59_B2SXEiadAT9wSIdGI08J3FKZH_tM-IwU7cWeH0KcDGjd8TtFlsugtoef_PNAPvp7n4fXeErnlI1I8qvDBPuFndrqxA-GX4zxjD1eXvy5uirv769uL9V3halBLUbXCge36XvtaSdk3qmmqVivX1dq16KvagbdCegetyy-3VtQWVOWVEihlVZ2x74e72eefHdJixkAOh8FOGHdkhO460Wn9PlhnrlYig-oAuhSJEm7MnMJo07MRYPZ1mK35X4fZ12GgMdlb3vx2lLCUU9wkO7lAb-ta6EbqPbc-cDlK_BswGXIBJ4c-JHSL8TG8q_UCP1emRA</recordid><startdate>20071110</startdate><enddate>20071110</enddate><creator>Arhonditsis, George B.</creator><creator>Qian, Song S.</creator><creator>Stow, Craig A.</creator><creator>Lamon, E. Conrad</creator><creator>Reckhow, Kenneth H.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7ST</scope><scope>C1K</scope><scope>SOI</scope><scope>7SN</scope><scope>7TV</scope><scope>7U6</scope><scope>7UA</scope><scope>F1W</scope><scope>H96</scope><scope>H97</scope><scope>L.G</scope><scope>M7N</scope></search><sort><creationdate>20071110</creationdate><title>Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake</title><author>Arhonditsis, George B. ; Qian, Song S. ; Stow, Craig A. ; Lamon, E. Conrad ; Reckhow, Kenneth H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c407t-361c0a8bb9d4722b57553697c849c6ed34c0da12dc06c0206a14a073d771e2233</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Adaptive management implementation</topic><topic>Animal and plant ecology</topic><topic>Animal, plant and microbial ecology</topic><topic>Bayesian calibration</topic><topic>Biological and medical sciences</topic><topic>Environmental management</topic><topic>Eutrophication</topic><topic>Fresh water ecosystems</topic><topic>Freshwater</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Techniques</topic><topic>Mechanistic models</topic><topic>Methods and techniques (sampling, tagging, trapping, modelling...)</topic><topic>Plankton dynamics</topic><topic>Risk assessment</topic><topic>Synecology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arhonditsis, George B.</creatorcontrib><creatorcontrib>Qian, Song S.</creatorcontrib><creatorcontrib>Stow, Craig A.</creatorcontrib><creatorcontrib>Lamon, E. Conrad</creatorcontrib><creatorcontrib>Reckhow, Kenneth H.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Environment Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Environment Abstracts</collection><collection>Ecology Abstracts</collection><collection>Pollution Abstracts</collection><collection>Sustainability Science Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><jtitle>Ecological modelling</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arhonditsis, George B.</au><au>Qian, Song S.</au><au>Stow, Craig A.</au><au>Lamon, E. Conrad</au><au>Reckhow, Kenneth H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake</atitle><jtitle>Ecological modelling</jtitle><date>2007-11-10</date><risdate>2007</risdate><volume>208</volume><issue>2</issue><spage>215</spage><epage>229</epage><pages>215-229</pages><issn>0304-3800</issn><eissn>1872-7026</eissn><coden>ECMODT</coden><abstract>We introduce the Bayesian calibration of process-based models to address the urgent need for robust modeling tools that can effectively support environmental management. The proposed framework aims to combine the advantageous features of both mechanistic and statistical approaches. Models that are based on mechanistic understanding yet remain within the bounds of data-based parameter estimation can accommodate rigorous and complete error analysis. The incorporation of mechanism improves the confidence in predictions made for a variety of conditions, while the statistical methods provide an empirical basis for parameter estimation and allow for estimates of predictive uncertainty. Our illustration focuses on eutrophication modeling but the proposed methodological framework can be easily transferred to a wide variety of disciplines (e.g., hydrology, ecotoxicology, air pollution). We examine the advantages of the Bayesian calibration using a four state variable (phosphate–detritus–phytoplankton–zooplankton) model and the mesotrophic Lake Washington (Washington State, USA) as a case study. Prior parameter distributions were formed on the basis of literature information, while Markov chain Monte Carlo simulations provided a convenient means for approximating the posterior parameter distributions. The model reproduces the key epilimnetic temporal patterns of the system and provides realistic estimates of predictive uncertainty for water quality variables of environmental interest. Finally, we highlight the benefits of Bayesian parameter estimation, such as the quantification of uncertainty in model predictions, optimization of the sampling design of monitoring programs using value of information concepts from decision theory, alignment with the policy practice of adaptive management, and expression of model outputs as probability distributions, that are perfectly suited for stakeholders and policy makers when making decisions for sustainable environmental management.</abstract><cop>Amsterdam</cop><pub>Elsevier B.V</pub><doi>10.1016/j.ecolmodel.2007.05.020</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0304-3800
ispartof Ecological modelling, 2007-11, Vol.208 (2), p.215-229
issn 0304-3800
1872-7026
language eng
recordid cdi_proquest_miscellaneous_19881899
source Access via ScienceDirect (Elsevier)
subjects Adaptive management implementation
Animal and plant ecology
Animal, plant and microbial ecology
Bayesian calibration
Biological and medical sciences
Environmental management
Eutrophication
Fresh water ecosystems
Freshwater
Fundamental and applied biological sciences. Psychology
General aspects. Techniques
Mechanistic models
Methods and techniques (sampling, tagging, trapping, modelling...)
Plankton dynamics
Risk assessment
Synecology
title Eutrophication risk assessment using Bayesian calibration of process-based models: Application to a mesotrophic lake
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A53%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eutrophication%20risk%20assessment%20using%20Bayesian%20calibration%20of%20process-based%20models:%20Application%20to%20a%20mesotrophic%20lake&rft.jtitle=Ecological%20modelling&rft.au=Arhonditsis,%20George%20B.&rft.date=2007-11-10&rft.volume=208&rft.issue=2&rft.spage=215&rft.epage=229&rft.pages=215-229&rft.issn=0304-3800&rft.eissn=1872-7026&rft.coden=ECMODT&rft_id=info:doi/10.1016/j.ecolmodel.2007.05.020&rft_dat=%3Cproquest_cross%3E14818471%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=14818471&rft_id=info:pmid/&rft_els_id=S0304380007003055&rfr_iscdi=true