Anatomically discrete functional effects of adenoviral clostridial light chain gene-based synaptic inhibition in the midbrain

The gene for the Light Chain fragment of Tetanus Toxin (LC) induces synaptic inhibition by preventing the release of synaptic vesicles. The present experiment applied this approach within the rat midbrain in order to demonstrate that LC gene expression can achieve functionally and anatomically discr...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Gene therapy 2006-06, Vol.13 (12), p.942-952
Hauptverfasser: Zhao, Z, Krishnaney, A, Teng, Q, Yang, J, Garrity-Moses, M, Liu, J K, Venkiteswaran, K, Subramanian, T, Davis, M, Boulis, N M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 952
container_issue 12
container_start_page 942
container_title Gene therapy
container_volume 13
creator Zhao, Z
Krishnaney, A
Teng, Q
Yang, J
Garrity-Moses, M
Liu, J K
Venkiteswaran, K
Subramanian, T
Davis, M
Boulis, N M
description The gene for the Light Chain fragment of Tetanus Toxin (LC) induces synaptic inhibition by preventing the release of synaptic vesicles. The present experiment applied this approach within the rat midbrain in order to demonstrate that LC gene expression can achieve functionally and anatomically discrete effects within a sensitive brain structure. The deep layers of the superior colliculus/deep mesencephalic nucleus (dSC/DpMe) that are located in the rostral midbrain has been implicated in fear-induced increase of the acoustic startle reflex (fear potentiated startle) but exists in close proximity to neural structures important for a variety of critical functions. The dSC/DpMe of adult rats was injected bilaterally with adenoviral vectors for LC, green fluorescent protein, or vehicle. Synaptobrevin was depleted in brain regions of adenoviral LC expression. LC gene expression in the dSC/DpMe inhibited the increase in startle amplitude seen with the control viral infection, and blocked context-dependent potentiation of startle induced by fear conditioning. Although LC gene expression reduced the absolute amount of cue-specific fear potentiated startle, it did not decrease percent potentiated startle to a cue, nor did it reduce fear-induced contextual freezing, nonspecific locomotor activity, or general health, indicating that its effects were functionally and anatomically specific. Thus, vector-driven LC expression inhibits the function of deep brain nuclei without altering the function of surrounding structures supporting its application to therapeutic neuromodulation.
doi_str_mv 10.1038/sj.gt.3302733
format Article
fullrecord <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19871863</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A182771903</galeid><sourcerecordid>A182771903</sourcerecordid><originalsourceid>FETCH-LOGICAL-c617t-57a3b838f3389f317d2d2073c7debd7e616ece97c49dfd9b0cc3851f38e7a24e3</originalsourceid><addsrcrecordid>eNp10s2L1DAUAPAiijuuHr1KUVzw0DEfbZMeh8WPhQXBj3NIk5c2QycZk3RxDv7vpuzAOLLSQ0Pyy3vkvVcULzFaY0T5-7hdD2lNKSKM0kfFCtesrZq6JY-LFerarmKY8IviWYxbhFDNOHlaXOC2wbghzar4vXEy-Z1VcpoOpbZRBUhQmtmpZL2TUwnGgEqx9KaUGpy_syHvqsnHFKy2eT3ZYUylGqV15QAOql5G0GU8OLlPVpXWjba3S7i8LNMI5c7qPmT-vHhi5BThxfF_Wfz4-OH79efq9sunm-vNbaVazFLVMEl7TrmhlHeGYqaJJohRxTT0mkGLW1DQMVV32uiuR0pR3mBDOTBJaqCXxdV93H3wP2eISezyS2GapAM_R4E7zjBvaYZv_oFbP4dchihIW9dtTRrcZPX6vwpzRijB7SnUICcQ1hmfglRLXrHBnDCGO7QkXD-g8qchN8U7MDbvn114d3YhmwS_0iDnGMXNt6_n9uovO4Kc0hj9NC-tiOewuocq-BgDGLEPdifDQWAkljETcSuGJI5jlv2rYwHmfgf6pI9zlcHbI5Axj5YJ0ikbT47lbnYIn54f85EbIJwq-XDmP7l66IU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>218723216</pqid></control><display><type>article</type><title>Anatomically discrete functional effects of adenoviral clostridial light chain gene-based synaptic inhibition in the midbrain</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Zhao, Z ; Krishnaney, A ; Teng, Q ; Yang, J ; Garrity-Moses, M ; Liu, J K ; Venkiteswaran, K ; Subramanian, T ; Davis, M ; Boulis, N M</creator><creatorcontrib>Zhao, Z ; Krishnaney, A ; Teng, Q ; Yang, J ; Garrity-Moses, M ; Liu, J K ; Venkiteswaran, K ; Subramanian, T ; Davis, M ; Boulis, N M</creatorcontrib><description>The gene for the Light Chain fragment of Tetanus Toxin (LC) induces synaptic inhibition by preventing the release of synaptic vesicles. The present experiment applied this approach within the rat midbrain in order to demonstrate that LC gene expression can achieve functionally and anatomically discrete effects within a sensitive brain structure. The deep layers of the superior colliculus/deep mesencephalic nucleus (dSC/DpMe) that are located in the rostral midbrain has been implicated in fear-induced increase of the acoustic startle reflex (fear potentiated startle) but exists in close proximity to neural structures important for a variety of critical functions. The dSC/DpMe of adult rats was injected bilaterally with adenoviral vectors for LC, green fluorescent protein, or vehicle. Synaptobrevin was depleted in brain regions of adenoviral LC expression. LC gene expression in the dSC/DpMe inhibited the increase in startle amplitude seen with the control viral infection, and blocked context-dependent potentiation of startle induced by fear conditioning. Although LC gene expression reduced the absolute amount of cue-specific fear potentiated startle, it did not decrease percent potentiated startle to a cue, nor did it reduce fear-induced contextual freezing, nonspecific locomotor activity, or general health, indicating that its effects were functionally and anatomically specific. Thus, vector-driven LC expression inhibits the function of deep brain nuclei without altering the function of surrounding structures supporting its application to therapeutic neuromodulation.</description><identifier>ISSN: 0969-7128</identifier><identifier>EISSN: 1476-5462</identifier><identifier>DOI: 10.1038/sj.gt.3302733</identifier><identifier>PMID: 16511525</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Adenoviridae - genetics ; Adenoviruses ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Animals ; Applied cell therapy and gene therapy ; Bacterial toxins ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedicine ; Biotechnology ; Blotting, Western - methods ; Brain ; Brain diseases ; Care and treatment ; Cell Biology ; Cell physiology ; Expression vectors ; Fear ; Fear conditioning ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Therapy ; Genetic aspects ; Genetic Therapy - methods ; Genetic Vectors - administration &amp; dosage ; Genetic Vectors - genetics ; Green fluorescent protein ; Green Fluorescent Proteins - genetics ; Health aspects ; Health. Pharmaceutical industry ; Human Genetics ; Immunohistochemistry - methods ; Industrial applications and implications. Economical aspects ; Injections, Intraventricular ; Locomotor activity ; Male ; Medical sciences ; Mesencephalon ; Mesencephalon - metabolism ; Metalloendopeptidases - genetics ; Metalloendopeptidases - metabolism ; Models, Animal ; Molecular and cellular biology ; Nanotechnology ; Neuromodulation ; original-article ; Physiological aspects ; Potentiation ; R-SNARE Proteins - genetics ; R-SNARE Proteins - metabolism ; Rats ; Rats, Sprague-Dawley ; Reflex ; Rodents ; Secretion. Exocytosis ; Startle response ; Superior colliculus ; Synaptic vesicles ; Synaptic Vesicles - metabolism ; Synaptobrevin ; Tetanus ; Tetanus toxin ; Tetanus Toxin - genetics ; Tetanus Toxin - metabolism ; Tonic immobility ; Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><ispartof>Gene therapy, 2006-06, Vol.13 (12), p.942-952</ispartof><rights>Springer Nature Limited 2006</rights><rights>2006 INIST-CNRS</rights><rights>COPYRIGHT 2006 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 2006</rights><rights>Nature Publishing Group 2006.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c617t-57a3b838f3389f317d2d2073c7debd7e616ece97c49dfd9b0cc3851f38e7a24e3</citedby><cites>FETCH-LOGICAL-c617t-57a3b838f3389f317d2d2073c7debd7e616ece97c49dfd9b0cc3851f38e7a24e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/sj.gt.3302733$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/sj.gt.3302733$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=17838901$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16511525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zhao, Z</creatorcontrib><creatorcontrib>Krishnaney, A</creatorcontrib><creatorcontrib>Teng, Q</creatorcontrib><creatorcontrib>Yang, J</creatorcontrib><creatorcontrib>Garrity-Moses, M</creatorcontrib><creatorcontrib>Liu, J K</creatorcontrib><creatorcontrib>Venkiteswaran, K</creatorcontrib><creatorcontrib>Subramanian, T</creatorcontrib><creatorcontrib>Davis, M</creatorcontrib><creatorcontrib>Boulis, N M</creatorcontrib><title>Anatomically discrete functional effects of adenoviral clostridial light chain gene-based synaptic inhibition in the midbrain</title><title>Gene therapy</title><addtitle>Gene Ther</addtitle><addtitle>Gene Ther</addtitle><description>The gene for the Light Chain fragment of Tetanus Toxin (LC) induces synaptic inhibition by preventing the release of synaptic vesicles. The present experiment applied this approach within the rat midbrain in order to demonstrate that LC gene expression can achieve functionally and anatomically discrete effects within a sensitive brain structure. The deep layers of the superior colliculus/deep mesencephalic nucleus (dSC/DpMe) that are located in the rostral midbrain has been implicated in fear-induced increase of the acoustic startle reflex (fear potentiated startle) but exists in close proximity to neural structures important for a variety of critical functions. The dSC/DpMe of adult rats was injected bilaterally with adenoviral vectors for LC, green fluorescent protein, or vehicle. Synaptobrevin was depleted in brain regions of adenoviral LC expression. LC gene expression in the dSC/DpMe inhibited the increase in startle amplitude seen with the control viral infection, and blocked context-dependent potentiation of startle induced by fear conditioning. Although LC gene expression reduced the absolute amount of cue-specific fear potentiated startle, it did not decrease percent potentiated startle to a cue, nor did it reduce fear-induced contextual freezing, nonspecific locomotor activity, or general health, indicating that its effects were functionally and anatomically specific. Thus, vector-driven LC expression inhibits the function of deep brain nuclei without altering the function of surrounding structures supporting its application to therapeutic neuromodulation.</description><subject>Adenoviridae - genetics</subject><subject>Adenoviruses</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Animals</subject><subject>Applied cell therapy and gene therapy</subject><subject>Bacterial toxins</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Blotting, Western - methods</subject><subject>Brain</subject><subject>Brain diseases</subject><subject>Care and treatment</subject><subject>Cell Biology</subject><subject>Cell physiology</subject><subject>Expression vectors</subject><subject>Fear</subject><subject>Fear conditioning</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Therapy</subject><subject>Genetic aspects</subject><subject>Genetic Therapy - methods</subject><subject>Genetic Vectors - administration &amp; dosage</subject><subject>Genetic Vectors - genetics</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Health aspects</subject><subject>Health. Pharmaceutical industry</subject><subject>Human Genetics</subject><subject>Immunohistochemistry - methods</subject><subject>Industrial applications and implications. Economical aspects</subject><subject>Injections, Intraventricular</subject><subject>Locomotor activity</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Mesencephalon</subject><subject>Mesencephalon - metabolism</subject><subject>Metalloendopeptidases - genetics</subject><subject>Metalloendopeptidases - metabolism</subject><subject>Models, Animal</subject><subject>Molecular and cellular biology</subject><subject>Nanotechnology</subject><subject>Neuromodulation</subject><subject>original-article</subject><subject>Physiological aspects</subject><subject>Potentiation</subject><subject>R-SNARE Proteins - genetics</subject><subject>R-SNARE Proteins - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reflex</subject><subject>Rodents</subject><subject>Secretion. Exocytosis</subject><subject>Startle response</subject><subject>Superior colliculus</subject><subject>Synaptic vesicles</subject><subject>Synaptic Vesicles - metabolism</subject><subject>Synaptobrevin</subject><subject>Tetanus</subject><subject>Tetanus toxin</subject><subject>Tetanus Toxin - genetics</subject><subject>Tetanus Toxin - metabolism</subject><subject>Tonic immobility</subject><subject>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</subject><issn>0969-7128</issn><issn>1476-5462</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10s2L1DAUAPAiijuuHr1KUVzw0DEfbZMeh8WPhQXBj3NIk5c2QycZk3RxDv7vpuzAOLLSQ0Pyy3vkvVcULzFaY0T5-7hdD2lNKSKM0kfFCtesrZq6JY-LFerarmKY8IviWYxbhFDNOHlaXOC2wbghzar4vXEy-Z1VcpoOpbZRBUhQmtmpZL2TUwnGgEqx9KaUGpy_syHvqsnHFKy2eT3ZYUylGqV15QAOql5G0GU8OLlPVpXWjba3S7i8LNMI5c7qPmT-vHhi5BThxfF_Wfz4-OH79efq9sunm-vNbaVazFLVMEl7TrmhlHeGYqaJJohRxTT0mkGLW1DQMVV32uiuR0pR3mBDOTBJaqCXxdV93H3wP2eISezyS2GapAM_R4E7zjBvaYZv_oFbP4dchihIW9dtTRrcZPX6vwpzRijB7SnUICcQ1hmfglRLXrHBnDCGO7QkXD-g8qchN8U7MDbvn114d3YhmwS_0iDnGMXNt6_n9uovO4Kc0hj9NC-tiOewuocq-BgDGLEPdifDQWAkljETcSuGJI5jlv2rYwHmfgf6pI9zlcHbI5Axj5YJ0ikbT47lbnYIn54f85EbIJwq-XDmP7l66IU</recordid><startdate>20060601</startdate><enddate>20060601</enddate><creator>Zhao, Z</creator><creator>Krishnaney, A</creator><creator>Teng, Q</creator><creator>Yang, J</creator><creator>Garrity-Moses, M</creator><creator>Liu, J K</creator><creator>Venkiteswaran, K</creator><creator>Subramanian, T</creator><creator>Davis, M</creator><creator>Boulis, N M</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7QL</scope><scope>7QO</scope><scope>C1K</scope></search><sort><creationdate>20060601</creationdate><title>Anatomically discrete functional effects of adenoviral clostridial light chain gene-based synaptic inhibition in the midbrain</title><author>Zhao, Z ; Krishnaney, A ; Teng, Q ; Yang, J ; Garrity-Moses, M ; Liu, J K ; Venkiteswaran, K ; Subramanian, T ; Davis, M ; Boulis, N M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c617t-57a3b838f3389f317d2d2073c7debd7e616ece97c49dfd9b0cc3851f38e7a24e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adenoviridae - genetics</topic><topic>Adenoviruses</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Animals</topic><topic>Applied cell therapy and gene therapy</topic><topic>Bacterial toxins</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Blotting, Western - methods</topic><topic>Brain</topic><topic>Brain diseases</topic><topic>Care and treatment</topic><topic>Cell Biology</topic><topic>Cell physiology</topic><topic>Expression vectors</topic><topic>Fear</topic><topic>Fear conditioning</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Therapy</topic><topic>Genetic aspects</topic><topic>Genetic Therapy - methods</topic><topic>Genetic Vectors - administration &amp; dosage</topic><topic>Genetic Vectors - genetics</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Health aspects</topic><topic>Health. Pharmaceutical industry</topic><topic>Human Genetics</topic><topic>Immunohistochemistry - methods</topic><topic>Industrial applications and implications. Economical aspects</topic><topic>Injections, Intraventricular</topic><topic>Locomotor activity</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Mesencephalon</topic><topic>Mesencephalon - metabolism</topic><topic>Metalloendopeptidases - genetics</topic><topic>Metalloendopeptidases - metabolism</topic><topic>Models, Animal</topic><topic>Molecular and cellular biology</topic><topic>Nanotechnology</topic><topic>Neuromodulation</topic><topic>original-article</topic><topic>Physiological aspects</topic><topic>Potentiation</topic><topic>R-SNARE Proteins - genetics</topic><topic>R-SNARE Proteins - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reflex</topic><topic>Rodents</topic><topic>Secretion. Exocytosis</topic><topic>Startle response</topic><topic>Superior colliculus</topic><topic>Synaptic vesicles</topic><topic>Synaptic Vesicles - metabolism</topic><topic>Synaptobrevin</topic><topic>Tetanus</topic><topic>Tetanus toxin</topic><topic>Tetanus Toxin - genetics</topic><topic>Tetanus Toxin - metabolism</topic><topic>Tonic immobility</topic><topic>Transfusions. Complications. Transfusion reactions. Cell and gene therapy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhao, Z</creatorcontrib><creatorcontrib>Krishnaney, A</creatorcontrib><creatorcontrib>Teng, Q</creatorcontrib><creatorcontrib>Yang, J</creatorcontrib><creatorcontrib>Garrity-Moses, M</creatorcontrib><creatorcontrib>Liu, J K</creatorcontrib><creatorcontrib>Venkiteswaran, K</creatorcontrib><creatorcontrib>Subramanian, T</creatorcontrib><creatorcontrib>Davis, M</creatorcontrib><creatorcontrib>Boulis, N M</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><jtitle>Gene therapy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhao, Z</au><au>Krishnaney, A</au><au>Teng, Q</au><au>Yang, J</au><au>Garrity-Moses, M</au><au>Liu, J K</au><au>Venkiteswaran, K</au><au>Subramanian, T</au><au>Davis, M</au><au>Boulis, N M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Anatomically discrete functional effects of adenoviral clostridial light chain gene-based synaptic inhibition in the midbrain</atitle><jtitle>Gene therapy</jtitle><stitle>Gene Ther</stitle><addtitle>Gene Ther</addtitle><date>2006-06-01</date><risdate>2006</risdate><volume>13</volume><issue>12</issue><spage>942</spage><epage>952</epage><pages>942-952</pages><issn>0969-7128</issn><eissn>1476-5462</eissn><abstract>The gene for the Light Chain fragment of Tetanus Toxin (LC) induces synaptic inhibition by preventing the release of synaptic vesicles. The present experiment applied this approach within the rat midbrain in order to demonstrate that LC gene expression can achieve functionally and anatomically discrete effects within a sensitive brain structure. The deep layers of the superior colliculus/deep mesencephalic nucleus (dSC/DpMe) that are located in the rostral midbrain has been implicated in fear-induced increase of the acoustic startle reflex (fear potentiated startle) but exists in close proximity to neural structures important for a variety of critical functions. The dSC/DpMe of adult rats was injected bilaterally with adenoviral vectors for LC, green fluorescent protein, or vehicle. Synaptobrevin was depleted in brain regions of adenoviral LC expression. LC gene expression in the dSC/DpMe inhibited the increase in startle amplitude seen with the control viral infection, and blocked context-dependent potentiation of startle induced by fear conditioning. Although LC gene expression reduced the absolute amount of cue-specific fear potentiated startle, it did not decrease percent potentiated startle to a cue, nor did it reduce fear-induced contextual freezing, nonspecific locomotor activity, or general health, indicating that its effects were functionally and anatomically specific. Thus, vector-driven LC expression inhibits the function of deep brain nuclei without altering the function of surrounding structures supporting its application to therapeutic neuromodulation.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>16511525</pmid><doi>10.1038/sj.gt.3302733</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0969-7128
ispartof Gene therapy, 2006-06, Vol.13 (12), p.942-952
issn 0969-7128
1476-5462
language eng
recordid cdi_proquest_miscellaneous_19871863
source MEDLINE; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Adenoviridae - genetics
Adenoviruses
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
Animals
Applied cell therapy and gene therapy
Bacterial toxins
Biological and medical sciences
Biomedical and Life Sciences
Biomedicine
Biotechnology
Blotting, Western - methods
Brain
Brain diseases
Care and treatment
Cell Biology
Cell physiology
Expression vectors
Fear
Fear conditioning
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Therapy
Genetic aspects
Genetic Therapy - methods
Genetic Vectors - administration & dosage
Genetic Vectors - genetics
Green fluorescent protein
Green Fluorescent Proteins - genetics
Health aspects
Health. Pharmaceutical industry
Human Genetics
Immunohistochemistry - methods
Industrial applications and implications. Economical aspects
Injections, Intraventricular
Locomotor activity
Male
Medical sciences
Mesencephalon
Mesencephalon - metabolism
Metalloendopeptidases - genetics
Metalloendopeptidases - metabolism
Models, Animal
Molecular and cellular biology
Nanotechnology
Neuromodulation
original-article
Physiological aspects
Potentiation
R-SNARE Proteins - genetics
R-SNARE Proteins - metabolism
Rats
Rats, Sprague-Dawley
Reflex
Rodents
Secretion. Exocytosis
Startle response
Superior colliculus
Synaptic vesicles
Synaptic Vesicles - metabolism
Synaptobrevin
Tetanus
Tetanus toxin
Tetanus Toxin - genetics
Tetanus Toxin - metabolism
Tonic immobility
Transfusions. Complications. Transfusion reactions. Cell and gene therapy
title Anatomically discrete functional effects of adenoviral clostridial light chain gene-based synaptic inhibition in the midbrain
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T19%3A45%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Anatomically%20discrete%20functional%20effects%20of%20adenoviral%20clostridial%20light%20chain%20gene-based%20synaptic%20inhibition%20in%20the%20midbrain&rft.jtitle=Gene%20therapy&rft.au=Zhao,%20Z&rft.date=2006-06-01&rft.volume=13&rft.issue=12&rft.spage=942&rft.epage=952&rft.pages=942-952&rft.issn=0969-7128&rft.eissn=1476-5462&rft_id=info:doi/10.1038/sj.gt.3302733&rft_dat=%3Cgale_proqu%3EA182771903%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=218723216&rft_id=info:pmid/16511525&rft_galeid=A182771903&rfr_iscdi=true