Implications of iron solubilization on soil phosphorus release in seasonally flooded forests of the lower Orinoco River, Venezuela

The microbial reduction of Fe oxides is thought to contribute with the release of P in sedimentary environments. However, secondary reactions of the bioproduced Fe(II) with P in solution, can lead to a decrease in the soluble P concentration. In this study, we examined how the reduction of Fe(III) a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Soil biology & biochemistry 2006-06, Vol.38 (6), p.1494-1499
Hauptverfasser: Chacon, Noemi, Flores, Saul, Gonzalez, Ana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The microbial reduction of Fe oxides is thought to contribute with the release of P in sedimentary environments. However, secondary reactions of the bioproduced Fe(II) with P in solution, can lead to a decrease in the soluble P concentration. In this study, we examined how the reduction of Fe(III) affects the soluble P concentration, when the soils of a seasonally flooded forest gradient are subjected to anaerobic conditions. Soil samples were collected during the dry season from two zones subjected to different flooding intensity: MAX and MIN zones that were inundated 8 and 2 months per year, respectively. When anaerobic conditions were applied to soils from both zones, a clear stimulatory effect on the Fe(III) reduction was observed. However, bioproduced Fe(II) underwent secondary chemical reactions, masking the extend of Fe(III) reduction of these soils. Iron was reduced mainly during the first 15 days of the anaerobic incubation and it was stimulated by a pulse of labile carbon. Iron dissolution did not lead to an increase of the soluble P content. However, in both zones P was high and positively correlated with Fe(II), implying that soil P mobilization was linked to Fe dissolution. In the MIN zone, soluble P concentration decreased, probably as a consequence of the secondary reactions of solubilized P with other non-redox sensitive soils elements. Fe solubilization also had an effect on the activity of acid phosphatase and consequently in the solubilization of P from the organic pool. In conclusion, the P cycle in these soils is strongly coupled to C and Fe cycles.
ISSN:0038-0717
1879-3428
DOI:10.1016/j.soilbio.2005.10.018