Speed breeding is a powerful tool to accelerate crop research and breeding
The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop pla...
Gespeichert in:
Veröffentlicht in: | Nature plants 2018, Vol.4 (1), p.23-29 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 29 |
---|---|
container_issue | 1 |
container_start_page | 23 |
container_title | Nature plants |
container_volume | 4 |
creator | Watson, Amy Ghosh, Sreya Williams, Matthew J. Cuddy, William S. Simmonds, James Rey, María-Dolores Asyraf Md Hatta, M. Hinchliffe, Alison Steed, Andrew Reynolds, Daniel Adamski, Nikolai M. Breakspear, Andy Korolev, Andrey Rayner, Tracey Dixon, Laura E. Riaz, Adnan Martin, William Ryan, Merrill Edwards, David Batley, Jacqueline Raman, Harsh Carter, Jeremy Rogers, Christian Domoney, Claire Moore, Graham Harwood, Wendy Nicholson, Paul Dieters, Mark J. DeLacy, Ian H. Zhou, Ji Uauy, Cristobal Boden, Scott A. Park, Robert F. Wulff, Brande B. H. Hickey, Lee T. |
description | The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand
1
. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (
Triticum aestivum
), durum wheat (
T. durum
), barley (
Hordeum vulgare
), chickpea (
Cicer arietinum
) and pea (
Pisum sativum
), and 4 generations for canola (
Brassica napus
), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies. |
doi_str_mv | 10.1038/s41477-017-0083-8 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1983853723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161919696</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-7a63dc09bd87684596d9fa295d51e4809e00a735054cb3e82666a7fd040c525a3</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdBbKn9AV5kwYuX6Oxu9usoxU8KHtTzskkmNaVN4m6C-O_d0kpBhpk5zDMvw7yEXDC4YSDMbcxZrnUGLCUYkZkTMuUgZQZcmwmZx7gGSFMphYIzMuE2hdBqSl7eesSKFiHVpl3RJlJP--4bQz1u6NB1u0J9WeIGgx-QlqHracCIPpSf1LfH3XNyWvtNxPmhz8jHw_374ilbvj4-L-6WWc8ZHzLtlahKsEVltDK5tKqytedWVpJhbsAigNdCgszLQqDhSimv6wpyKCWXXszI9V63D93XiHFw2yam-za-xW6MjlkjjBSai4Re_UPX3RjadJ3jTDHLrLIqUZcHaiy2WLk-NFsfftzflxLA90BMo3aF4SjDwO0ccHsHXPqx2zngjPgFyjR18Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161919696</pqid></control><display><type>article</type><title>Speed breeding is a powerful tool to accelerate crop research and breeding</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Watson, Amy ; Ghosh, Sreya ; Williams, Matthew J. ; Cuddy, William S. ; Simmonds, James ; Rey, María-Dolores ; Asyraf Md Hatta, M. ; Hinchliffe, Alison ; Steed, Andrew ; Reynolds, Daniel ; Adamski, Nikolai M. ; Breakspear, Andy ; Korolev, Andrey ; Rayner, Tracey ; Dixon, Laura E. ; Riaz, Adnan ; Martin, William ; Ryan, Merrill ; Edwards, David ; Batley, Jacqueline ; Raman, Harsh ; Carter, Jeremy ; Rogers, Christian ; Domoney, Claire ; Moore, Graham ; Harwood, Wendy ; Nicholson, Paul ; Dieters, Mark J. ; DeLacy, Ian H. ; Zhou, Ji ; Uauy, Cristobal ; Boden, Scott A. ; Park, Robert F. ; Wulff, Brande B. H. ; Hickey, Lee T.</creator><creatorcontrib>Watson, Amy ; Ghosh, Sreya ; Williams, Matthew J. ; Cuddy, William S. ; Simmonds, James ; Rey, María-Dolores ; Asyraf Md Hatta, M. ; Hinchliffe, Alison ; Steed, Andrew ; Reynolds, Daniel ; Adamski, Nikolai M. ; Breakspear, Andy ; Korolev, Andrey ; Rayner, Tracey ; Dixon, Laura E. ; Riaz, Adnan ; Martin, William ; Ryan, Merrill ; Edwards, David ; Batley, Jacqueline ; Raman, Harsh ; Carter, Jeremy ; Rogers, Christian ; Domoney, Claire ; Moore, Graham ; Harwood, Wendy ; Nicholson, Paul ; Dieters, Mark J. ; DeLacy, Ian H. ; Zhou, Ji ; Uauy, Cristobal ; Boden, Scott A. ; Park, Robert F. ; Wulff, Brande B. H. ; Hickey, Lee T.</creatorcontrib><description>The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand
1
. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (
Triticum aestivum
), durum wheat (
T. durum
), barley (
Hordeum vulgare
), chickpea (
Cicer arietinum
) and pea (
Pisum sativum
), and 4 generations for canola (
Brassica napus
), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.</description><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-017-0083-8</identifier><identifier>PMID: 29292376</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 631/1647 ; 631/449 ; 631/449/1659 ; 631/449/711 ; 706/1143 ; 82/47 ; Biomedical and Life Sciences ; Brassica napus - genetics ; Cicer - genetics ; Crop improvement ; Crops, Agricultural ; Environmental changes ; Food security ; Genome editing ; Growth chambers ; Hordeum - genetics ; Human populations ; Letter ; Life Sciences ; Lighting ; Phenotype ; Pisum sativum - genetics ; Plant Breeding ; Plant Sciences ; Spring wheat ; Time Factors ; Triticum - genetics</subject><ispartof>Nature plants, 2018, Vol.4 (1), p.23-29</ispartof><rights>The Authors 2017, under exclusive licence to Macmillan Publishers Limited, part of Springer Nature 2018</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p212t-7a63dc09bd87684596d9fa295d51e4809e00a735054cb3e82666a7fd040c525a3</cites><orcidid>0000-0002-4505-5895 ; 0000-0002-8952-5684 ; 0000-0002-9814-1770 ; 0000-0001-7599-6760 ; 0000-0001-6909-7101 ; 0000-0002-7271-8914 ; 0000-0002-5752-5524 ; 0000-0001-5297-4067 ; 0000-0002-9145-5371 ; 0000-0003-4044-4346 ; 0000-0002-6458-8697 ; 0000-0003-2887-3260 ; 0000-0003-3797-8494 ; 0000-0002-0882-064X ; 0000-0002-5391-5824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-017-0083-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-017-0083-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29292376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watson, Amy</creatorcontrib><creatorcontrib>Ghosh, Sreya</creatorcontrib><creatorcontrib>Williams, Matthew J.</creatorcontrib><creatorcontrib>Cuddy, William S.</creatorcontrib><creatorcontrib>Simmonds, James</creatorcontrib><creatorcontrib>Rey, María-Dolores</creatorcontrib><creatorcontrib>Asyraf Md Hatta, M.</creatorcontrib><creatorcontrib>Hinchliffe, Alison</creatorcontrib><creatorcontrib>Steed, Andrew</creatorcontrib><creatorcontrib>Reynolds, Daniel</creatorcontrib><creatorcontrib>Adamski, Nikolai M.</creatorcontrib><creatorcontrib>Breakspear, Andy</creatorcontrib><creatorcontrib>Korolev, Andrey</creatorcontrib><creatorcontrib>Rayner, Tracey</creatorcontrib><creatorcontrib>Dixon, Laura E.</creatorcontrib><creatorcontrib>Riaz, Adnan</creatorcontrib><creatorcontrib>Martin, William</creatorcontrib><creatorcontrib>Ryan, Merrill</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>Batley, Jacqueline</creatorcontrib><creatorcontrib>Raman, Harsh</creatorcontrib><creatorcontrib>Carter, Jeremy</creatorcontrib><creatorcontrib>Rogers, Christian</creatorcontrib><creatorcontrib>Domoney, Claire</creatorcontrib><creatorcontrib>Moore, Graham</creatorcontrib><creatorcontrib>Harwood, Wendy</creatorcontrib><creatorcontrib>Nicholson, Paul</creatorcontrib><creatorcontrib>Dieters, Mark J.</creatorcontrib><creatorcontrib>DeLacy, Ian H.</creatorcontrib><creatorcontrib>Zhou, Ji</creatorcontrib><creatorcontrib>Uauy, Cristobal</creatorcontrib><creatorcontrib>Boden, Scott A.</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>Wulff, Brande B. H.</creatorcontrib><creatorcontrib>Hickey, Lee T.</creatorcontrib><title>Speed breeding is a powerful tool to accelerate crop research and breeding</title><title>Nature plants</title><addtitle>Nature Plants</addtitle><addtitle>Nat Plants</addtitle><description>The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand
1
. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (
Triticum aestivum
), durum wheat (
T. durum
), barley (
Hordeum vulgare
), chickpea (
Cicer arietinum
) and pea (
Pisum sativum
), and 4 generations for canola (
Brassica napus
), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.</description><subject>13/106</subject><subject>631/1647</subject><subject>631/449</subject><subject>631/449/1659</subject><subject>631/449/711</subject><subject>706/1143</subject><subject>82/47</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica napus - genetics</subject><subject>Cicer - genetics</subject><subject>Crop improvement</subject><subject>Crops, Agricultural</subject><subject>Environmental changes</subject><subject>Food security</subject><subject>Genome editing</subject><subject>Growth chambers</subject><subject>Hordeum - genetics</subject><subject>Human populations</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Lighting</subject><subject>Phenotype</subject><subject>Pisum sativum - genetics</subject><subject>Plant Breeding</subject><subject>Plant Sciences</subject><subject>Spring wheat</subject><subject>Time Factors</subject><subject>Triticum - genetics</subject><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU1Lw0AQhhdBbKn9AV5kwYuX6Oxu9usoxU8KHtTzskkmNaVN4m6C-O_d0kpBhpk5zDMvw7yEXDC4YSDMbcxZrnUGLCUYkZkTMuUgZQZcmwmZx7gGSFMphYIzMuE2hdBqSl7eesSKFiHVpl3RJlJP--4bQz1u6NB1u0J9WeIGgx-QlqHracCIPpSf1LfH3XNyWvtNxPmhz8jHw_374ilbvj4-L-6WWc8ZHzLtlahKsEVltDK5tKqytedWVpJhbsAigNdCgszLQqDhSimv6wpyKCWXXszI9V63D93XiHFw2yam-za-xW6MjlkjjBSai4Re_UPX3RjadJ3jTDHLrLIqUZcHaiy2WLk-NFsfftzflxLA90BMo3aF4SjDwO0ccHsHXPqx2zngjPgFyjR18Q</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Watson, Amy</creator><creator>Ghosh, Sreya</creator><creator>Williams, Matthew J.</creator><creator>Cuddy, William S.</creator><creator>Simmonds, James</creator><creator>Rey, María-Dolores</creator><creator>Asyraf Md Hatta, M.</creator><creator>Hinchliffe, Alison</creator><creator>Steed, Andrew</creator><creator>Reynolds, Daniel</creator><creator>Adamski, Nikolai M.</creator><creator>Breakspear, Andy</creator><creator>Korolev, Andrey</creator><creator>Rayner, Tracey</creator><creator>Dixon, Laura E.</creator><creator>Riaz, Adnan</creator><creator>Martin, William</creator><creator>Ryan, Merrill</creator><creator>Edwards, David</creator><creator>Batley, Jacqueline</creator><creator>Raman, Harsh</creator><creator>Carter, Jeremy</creator><creator>Rogers, Christian</creator><creator>Domoney, Claire</creator><creator>Moore, Graham</creator><creator>Harwood, Wendy</creator><creator>Nicholson, Paul</creator><creator>Dieters, Mark J.</creator><creator>DeLacy, Ian H.</creator><creator>Zhou, Ji</creator><creator>Uauy, Cristobal</creator><creator>Boden, Scott A.</creator><creator>Park, Robert F.</creator><creator>Wulff, Brande B. H.</creator><creator>Hickey, Lee T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4505-5895</orcidid><orcidid>https://orcid.org/0000-0002-8952-5684</orcidid><orcidid>https://orcid.org/0000-0002-9814-1770</orcidid><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0001-6909-7101</orcidid><orcidid>https://orcid.org/0000-0002-7271-8914</orcidid><orcidid>https://orcid.org/0000-0002-5752-5524</orcidid><orcidid>https://orcid.org/0000-0001-5297-4067</orcidid><orcidid>https://orcid.org/0000-0002-9145-5371</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-6458-8697</orcidid><orcidid>https://orcid.org/0000-0003-2887-3260</orcidid><orcidid>https://orcid.org/0000-0003-3797-8494</orcidid><orcidid>https://orcid.org/0000-0002-0882-064X</orcidid><orcidid>https://orcid.org/0000-0002-5391-5824</orcidid></search><sort><creationdate>2018</creationdate><title>Speed breeding is a powerful tool to accelerate crop research and breeding</title><author>Watson, Amy ; Ghosh, Sreya ; Williams, Matthew J. ; Cuddy, William S. ; Simmonds, James ; Rey, María-Dolores ; Asyraf Md Hatta, M. ; Hinchliffe, Alison ; Steed, Andrew ; Reynolds, Daniel ; Adamski, Nikolai M. ; Breakspear, Andy ; Korolev, Andrey ; Rayner, Tracey ; Dixon, Laura E. ; Riaz, Adnan ; Martin, William ; Ryan, Merrill ; Edwards, David ; Batley, Jacqueline ; Raman, Harsh ; Carter, Jeremy ; Rogers, Christian ; Domoney, Claire ; Moore, Graham ; Harwood, Wendy ; Nicholson, Paul ; Dieters, Mark J. ; DeLacy, Ian H. ; Zhou, Ji ; Uauy, Cristobal ; Boden, Scott A. ; Park, Robert F. ; Wulff, Brande B. H. ; Hickey, Lee T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-7a63dc09bd87684596d9fa295d51e4809e00a735054cb3e82666a7fd040c525a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>631/1647</topic><topic>631/449</topic><topic>631/449/1659</topic><topic>631/449/711</topic><topic>706/1143</topic><topic>82/47</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica napus - genetics</topic><topic>Cicer - genetics</topic><topic>Crop improvement</topic><topic>Crops, Agricultural</topic><topic>Environmental changes</topic><topic>Food security</topic><topic>Genome editing</topic><topic>Growth chambers</topic><topic>Hordeum - genetics</topic><topic>Human populations</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Lighting</topic><topic>Phenotype</topic><topic>Pisum sativum - genetics</topic><topic>Plant Breeding</topic><topic>Plant Sciences</topic><topic>Spring wheat</topic><topic>Time Factors</topic><topic>Triticum - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, Amy</creatorcontrib><creatorcontrib>Ghosh, Sreya</creatorcontrib><creatorcontrib>Williams, Matthew J.</creatorcontrib><creatorcontrib>Cuddy, William S.</creatorcontrib><creatorcontrib>Simmonds, James</creatorcontrib><creatorcontrib>Rey, María-Dolores</creatorcontrib><creatorcontrib>Asyraf Md Hatta, M.</creatorcontrib><creatorcontrib>Hinchliffe, Alison</creatorcontrib><creatorcontrib>Steed, Andrew</creatorcontrib><creatorcontrib>Reynolds, Daniel</creatorcontrib><creatorcontrib>Adamski, Nikolai M.</creatorcontrib><creatorcontrib>Breakspear, Andy</creatorcontrib><creatorcontrib>Korolev, Andrey</creatorcontrib><creatorcontrib>Rayner, Tracey</creatorcontrib><creatorcontrib>Dixon, Laura E.</creatorcontrib><creatorcontrib>Riaz, Adnan</creatorcontrib><creatorcontrib>Martin, William</creatorcontrib><creatorcontrib>Ryan, Merrill</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>Batley, Jacqueline</creatorcontrib><creatorcontrib>Raman, Harsh</creatorcontrib><creatorcontrib>Carter, Jeremy</creatorcontrib><creatorcontrib>Rogers, Christian</creatorcontrib><creatorcontrib>Domoney, Claire</creatorcontrib><creatorcontrib>Moore, Graham</creatorcontrib><creatorcontrib>Harwood, Wendy</creatorcontrib><creatorcontrib>Nicholson, Paul</creatorcontrib><creatorcontrib>Dieters, Mark J.</creatorcontrib><creatorcontrib>DeLacy, Ian H.</creatorcontrib><creatorcontrib>Zhou, Ji</creatorcontrib><creatorcontrib>Uauy, Cristobal</creatorcontrib><creatorcontrib>Boden, Scott A.</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>Wulff, Brande B. H.</creatorcontrib><creatorcontrib>Hickey, Lee T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, Amy</au><au>Ghosh, Sreya</au><au>Williams, Matthew J.</au><au>Cuddy, William S.</au><au>Simmonds, James</au><au>Rey, María-Dolores</au><au>Asyraf Md Hatta, M.</au><au>Hinchliffe, Alison</au><au>Steed, Andrew</au><au>Reynolds, Daniel</au><au>Adamski, Nikolai M.</au><au>Breakspear, Andy</au><au>Korolev, Andrey</au><au>Rayner, Tracey</au><au>Dixon, Laura E.</au><au>Riaz, Adnan</au><au>Martin, William</au><au>Ryan, Merrill</au><au>Edwards, David</au><au>Batley, Jacqueline</au><au>Raman, Harsh</au><au>Carter, Jeremy</au><au>Rogers, Christian</au><au>Domoney, Claire</au><au>Moore, Graham</au><au>Harwood, Wendy</au><au>Nicholson, Paul</au><au>Dieters, Mark J.</au><au>DeLacy, Ian H.</au><au>Zhou, Ji</au><au>Uauy, Cristobal</au><au>Boden, Scott A.</au><au>Park, Robert F.</au><au>Wulff, Brande B. H.</au><au>Hickey, Lee T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speed breeding is a powerful tool to accelerate crop research and breeding</atitle><jtitle>Nature plants</jtitle><stitle>Nature Plants</stitle><addtitle>Nat Plants</addtitle><date>2018</date><risdate>2018</risdate><volume>4</volume><issue>1</issue><spage>23</spage><epage>29</epage><pages>23-29</pages><eissn>2055-0278</eissn><abstract>The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand
1
. This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat (
Triticum aestivum
), durum wheat (
T. durum
), barley (
Hordeum vulgare
), chickpea (
Cicer arietinum
) and pea (
Pisum sativum
), and 4 generations for canola (
Brassica napus
), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement.
Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29292376</pmid><doi>10.1038/s41477-017-0083-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4505-5895</orcidid><orcidid>https://orcid.org/0000-0002-8952-5684</orcidid><orcidid>https://orcid.org/0000-0002-9814-1770</orcidid><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0001-6909-7101</orcidid><orcidid>https://orcid.org/0000-0002-7271-8914</orcidid><orcidid>https://orcid.org/0000-0002-5752-5524</orcidid><orcidid>https://orcid.org/0000-0001-5297-4067</orcidid><orcidid>https://orcid.org/0000-0002-9145-5371</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-6458-8697</orcidid><orcidid>https://orcid.org/0000-0003-2887-3260</orcidid><orcidid>https://orcid.org/0000-0003-3797-8494</orcidid><orcidid>https://orcid.org/0000-0002-0882-064X</orcidid><orcidid>https://orcid.org/0000-0002-5391-5824</orcidid></addata></record> |
fulltext | fulltext |
identifier | EISSN: 2055-0278 |
ispartof | Nature plants, 2018, Vol.4 (1), p.23-29 |
issn | 2055-0278 |
language | eng |
recordid | cdi_proquest_miscellaneous_1983853723 |
source | MEDLINE; Springer Online Journals |
subjects | 13/106 631/1647 631/449 631/449/1659 631/449/711 706/1143 82/47 Biomedical and Life Sciences Brassica napus - genetics Cicer - genetics Crop improvement Crops, Agricultural Environmental changes Food security Genome editing Growth chambers Hordeum - genetics Human populations Letter Life Sciences Lighting Phenotype Pisum sativum - genetics Plant Breeding Plant Sciences Spring wheat Time Factors Triticum - genetics |
title | Speed breeding is a powerful tool to accelerate crop research and breeding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speed%20breeding%20is%20a%20powerful%20tool%20to%20accelerate%20crop%20research%20and%20breeding&rft.jtitle=Nature%20plants&rft.au=Watson,%20Amy&rft.date=2018&rft.volume=4&rft.issue=1&rft.spage=23&rft.epage=29&rft.pages=23-29&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-017-0083-8&rft_dat=%3Cproquest_pubme%3E2161919696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161919696&rft_id=info:pmid/29292376&rfr_iscdi=true |