Speed breeding is a powerful tool to accelerate crop research and breeding

The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop pla...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature plants 2018, Vol.4 (1), p.23-29
Hauptverfasser: Watson, Amy, Ghosh, Sreya, Williams, Matthew J., Cuddy, William S., Simmonds, James, Rey, María-Dolores, Asyraf Md Hatta, M., Hinchliffe, Alison, Steed, Andrew, Reynolds, Daniel, Adamski, Nikolai M., Breakspear, Andy, Korolev, Andrey, Rayner, Tracey, Dixon, Laura E., Riaz, Adnan, Martin, William, Ryan, Merrill, Edwards, David, Batley, Jacqueline, Raman, Harsh, Carter, Jeremy, Rogers, Christian, Domoney, Claire, Moore, Graham, Harwood, Wendy, Nicholson, Paul, Dieters, Mark J., DeLacy, Ian H., Zhou, Ji, Uauy, Cristobal, Boden, Scott A., Park, Robert F., Wulff, Brande B. H., Hickey, Lee T.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 29
container_issue 1
container_start_page 23
container_title Nature plants
container_volume 4
creator Watson, Amy
Ghosh, Sreya
Williams, Matthew J.
Cuddy, William S.
Simmonds, James
Rey, María-Dolores
Asyraf Md Hatta, M.
Hinchliffe, Alison
Steed, Andrew
Reynolds, Daniel
Adamski, Nikolai M.
Breakspear, Andy
Korolev, Andrey
Rayner, Tracey
Dixon, Laura E.
Riaz, Adnan
Martin, William
Ryan, Merrill
Edwards, David
Batley, Jacqueline
Raman, Harsh
Carter, Jeremy
Rogers, Christian
Domoney, Claire
Moore, Graham
Harwood, Wendy
Nicholson, Paul
Dieters, Mark J.
DeLacy, Ian H.
Zhou, Ji
Uauy, Cristobal
Boden, Scott A.
Park, Robert F.
Wulff, Brande B. H.
Hickey, Lee T.
description The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat ( Triticum aestivum ), durum wheat ( T. durum ), barley ( Hordeum vulgare ), chickpea ( Cicer arietinum ) and pea ( Pisum sativum ), and 4 generations for canola ( Brassica napus ), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement. Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.
doi_str_mv 10.1038/s41477-017-0083-8
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1983853723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2161919696</sourcerecordid><originalsourceid>FETCH-LOGICAL-p212t-7a63dc09bd87684596d9fa295d51e4809e00a735054cb3e82666a7fd040c525a3</originalsourceid><addsrcrecordid>eNpdkU1Lw0AQhhdBbKn9AV5kwYuX6Oxu9usoxU8KHtTzskkmNaVN4m6C-O_d0kpBhpk5zDMvw7yEXDC4YSDMbcxZrnUGLCUYkZkTMuUgZQZcmwmZx7gGSFMphYIzMuE2hdBqSl7eesSKFiHVpl3RJlJP--4bQz1u6NB1u0J9WeIGgx-QlqHracCIPpSf1LfH3XNyWvtNxPmhz8jHw_374ilbvj4-L-6WWc8ZHzLtlahKsEVltDK5tKqytedWVpJhbsAigNdCgszLQqDhSimv6wpyKCWXXszI9V63D93XiHFw2yam-za-xW6MjlkjjBSai4Re_UPX3RjadJ3jTDHLrLIqUZcHaiy2WLk-NFsfftzflxLA90BMo3aF4SjDwO0ccHsHXPqx2zngjPgFyjR18Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2161919696</pqid></control><display><type>article</type><title>Speed breeding is a powerful tool to accelerate crop research and breeding</title><source>MEDLINE</source><source>Springer Online Journals</source><creator>Watson, Amy ; Ghosh, Sreya ; Williams, Matthew J. ; Cuddy, William S. ; Simmonds, James ; Rey, María-Dolores ; Asyraf Md Hatta, M. ; Hinchliffe, Alison ; Steed, Andrew ; Reynolds, Daniel ; Adamski, Nikolai M. ; Breakspear, Andy ; Korolev, Andrey ; Rayner, Tracey ; Dixon, Laura E. ; Riaz, Adnan ; Martin, William ; Ryan, Merrill ; Edwards, David ; Batley, Jacqueline ; Raman, Harsh ; Carter, Jeremy ; Rogers, Christian ; Domoney, Claire ; Moore, Graham ; Harwood, Wendy ; Nicholson, Paul ; Dieters, Mark J. ; DeLacy, Ian H. ; Zhou, Ji ; Uauy, Cristobal ; Boden, Scott A. ; Park, Robert F. ; Wulff, Brande B. H. ; Hickey, Lee T.</creator><creatorcontrib>Watson, Amy ; Ghosh, Sreya ; Williams, Matthew J. ; Cuddy, William S. ; Simmonds, James ; Rey, María-Dolores ; Asyraf Md Hatta, M. ; Hinchliffe, Alison ; Steed, Andrew ; Reynolds, Daniel ; Adamski, Nikolai M. ; Breakspear, Andy ; Korolev, Andrey ; Rayner, Tracey ; Dixon, Laura E. ; Riaz, Adnan ; Martin, William ; Ryan, Merrill ; Edwards, David ; Batley, Jacqueline ; Raman, Harsh ; Carter, Jeremy ; Rogers, Christian ; Domoney, Claire ; Moore, Graham ; Harwood, Wendy ; Nicholson, Paul ; Dieters, Mark J. ; DeLacy, Ian H. ; Zhou, Ji ; Uauy, Cristobal ; Boden, Scott A. ; Park, Robert F. ; Wulff, Brande B. H. ; Hickey, Lee T.</creatorcontrib><description>The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat ( Triticum aestivum ), durum wheat ( T. durum ), barley ( Hordeum vulgare ), chickpea ( Cicer arietinum ) and pea ( Pisum sativum ), and 4 generations for canola ( Brassica napus ), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement. Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.</description><identifier>EISSN: 2055-0278</identifier><identifier>DOI: 10.1038/s41477-017-0083-8</identifier><identifier>PMID: 29292376</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>13/106 ; 631/1647 ; 631/449 ; 631/449/1659 ; 631/449/711 ; 706/1143 ; 82/47 ; Biomedical and Life Sciences ; Brassica napus - genetics ; Cicer - genetics ; Crop improvement ; Crops, Agricultural ; Environmental changes ; Food security ; Genome editing ; Growth chambers ; Hordeum - genetics ; Human populations ; Letter ; Life Sciences ; Lighting ; Phenotype ; Pisum sativum - genetics ; Plant Breeding ; Plant Sciences ; Spring wheat ; Time Factors ; Triticum - genetics</subject><ispartof>Nature plants, 2018, Vol.4 (1), p.23-29</ispartof><rights>The Authors 2017, under exclusive licence to Macmillan Publishers Limited, part of Springer Nature 2018</rights><rights>Copyright Nature Publishing Group Jan 2018</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-p212t-7a63dc09bd87684596d9fa295d51e4809e00a735054cb3e82666a7fd040c525a3</cites><orcidid>0000-0002-4505-5895 ; 0000-0002-8952-5684 ; 0000-0002-9814-1770 ; 0000-0001-7599-6760 ; 0000-0001-6909-7101 ; 0000-0002-7271-8914 ; 0000-0002-5752-5524 ; 0000-0001-5297-4067 ; 0000-0002-9145-5371 ; 0000-0003-4044-4346 ; 0000-0002-6458-8697 ; 0000-0003-2887-3260 ; 0000-0003-3797-8494 ; 0000-0002-0882-064X ; 0000-0002-5391-5824</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/s41477-017-0083-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/s41477-017-0083-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,41464,42533,51294</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29292376$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Watson, Amy</creatorcontrib><creatorcontrib>Ghosh, Sreya</creatorcontrib><creatorcontrib>Williams, Matthew J.</creatorcontrib><creatorcontrib>Cuddy, William S.</creatorcontrib><creatorcontrib>Simmonds, James</creatorcontrib><creatorcontrib>Rey, María-Dolores</creatorcontrib><creatorcontrib>Asyraf Md Hatta, M.</creatorcontrib><creatorcontrib>Hinchliffe, Alison</creatorcontrib><creatorcontrib>Steed, Andrew</creatorcontrib><creatorcontrib>Reynolds, Daniel</creatorcontrib><creatorcontrib>Adamski, Nikolai M.</creatorcontrib><creatorcontrib>Breakspear, Andy</creatorcontrib><creatorcontrib>Korolev, Andrey</creatorcontrib><creatorcontrib>Rayner, Tracey</creatorcontrib><creatorcontrib>Dixon, Laura E.</creatorcontrib><creatorcontrib>Riaz, Adnan</creatorcontrib><creatorcontrib>Martin, William</creatorcontrib><creatorcontrib>Ryan, Merrill</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>Batley, Jacqueline</creatorcontrib><creatorcontrib>Raman, Harsh</creatorcontrib><creatorcontrib>Carter, Jeremy</creatorcontrib><creatorcontrib>Rogers, Christian</creatorcontrib><creatorcontrib>Domoney, Claire</creatorcontrib><creatorcontrib>Moore, Graham</creatorcontrib><creatorcontrib>Harwood, Wendy</creatorcontrib><creatorcontrib>Nicholson, Paul</creatorcontrib><creatorcontrib>Dieters, Mark J.</creatorcontrib><creatorcontrib>DeLacy, Ian H.</creatorcontrib><creatorcontrib>Zhou, Ji</creatorcontrib><creatorcontrib>Uauy, Cristobal</creatorcontrib><creatorcontrib>Boden, Scott A.</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>Wulff, Brande B. H.</creatorcontrib><creatorcontrib>Hickey, Lee T.</creatorcontrib><title>Speed breeding is a powerful tool to accelerate crop research and breeding</title><title>Nature plants</title><addtitle>Nature Plants</addtitle><addtitle>Nat Plants</addtitle><description>The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat ( Triticum aestivum ), durum wheat ( T. durum ), barley ( Hordeum vulgare ), chickpea ( Cicer arietinum ) and pea ( Pisum sativum ), and 4 generations for canola ( Brassica napus ), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement. Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.</description><subject>13/106</subject><subject>631/1647</subject><subject>631/449</subject><subject>631/449/1659</subject><subject>631/449/711</subject><subject>706/1143</subject><subject>82/47</subject><subject>Biomedical and Life Sciences</subject><subject>Brassica napus - genetics</subject><subject>Cicer - genetics</subject><subject>Crop improvement</subject><subject>Crops, Agricultural</subject><subject>Environmental changes</subject><subject>Food security</subject><subject>Genome editing</subject><subject>Growth chambers</subject><subject>Hordeum - genetics</subject><subject>Human populations</subject><subject>Letter</subject><subject>Life Sciences</subject><subject>Lighting</subject><subject>Phenotype</subject><subject>Pisum sativum - genetics</subject><subject>Plant Breeding</subject><subject>Plant Sciences</subject><subject>Spring wheat</subject><subject>Time Factors</subject><subject>Triticum - genetics</subject><issn>2055-0278</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkU1Lw0AQhhdBbKn9AV5kwYuX6Oxu9usoxU8KHtTzskkmNaVN4m6C-O_d0kpBhpk5zDMvw7yEXDC4YSDMbcxZrnUGLCUYkZkTMuUgZQZcmwmZx7gGSFMphYIzMuE2hdBqSl7eesSKFiHVpl3RJlJP--4bQz1u6NB1u0J9WeIGgx-QlqHracCIPpSf1LfH3XNyWvtNxPmhz8jHw_374ilbvj4-L-6WWc8ZHzLtlahKsEVltDK5tKqytedWVpJhbsAigNdCgszLQqDhSimv6wpyKCWXXszI9V63D93XiHFw2yam-za-xW6MjlkjjBSai4Re_UPX3RjadJ3jTDHLrLIqUZcHaiy2WLk-NFsfftzflxLA90BMo3aF4SjDwO0ccHsHXPqx2zngjPgFyjR18Q</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Watson, Amy</creator><creator>Ghosh, Sreya</creator><creator>Williams, Matthew J.</creator><creator>Cuddy, William S.</creator><creator>Simmonds, James</creator><creator>Rey, María-Dolores</creator><creator>Asyraf Md Hatta, M.</creator><creator>Hinchliffe, Alison</creator><creator>Steed, Andrew</creator><creator>Reynolds, Daniel</creator><creator>Adamski, Nikolai M.</creator><creator>Breakspear, Andy</creator><creator>Korolev, Andrey</creator><creator>Rayner, Tracey</creator><creator>Dixon, Laura E.</creator><creator>Riaz, Adnan</creator><creator>Martin, William</creator><creator>Ryan, Merrill</creator><creator>Edwards, David</creator><creator>Batley, Jacqueline</creator><creator>Raman, Harsh</creator><creator>Carter, Jeremy</creator><creator>Rogers, Christian</creator><creator>Domoney, Claire</creator><creator>Moore, Graham</creator><creator>Harwood, Wendy</creator><creator>Nicholson, Paul</creator><creator>Dieters, Mark J.</creator><creator>DeLacy, Ian H.</creator><creator>Zhou, Ji</creator><creator>Uauy, Cristobal</creator><creator>Boden, Scott A.</creator><creator>Park, Robert F.</creator><creator>Wulff, Brande B. H.</creator><creator>Hickey, Lee T.</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7SN</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-4505-5895</orcidid><orcidid>https://orcid.org/0000-0002-8952-5684</orcidid><orcidid>https://orcid.org/0000-0002-9814-1770</orcidid><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0001-6909-7101</orcidid><orcidid>https://orcid.org/0000-0002-7271-8914</orcidid><orcidid>https://orcid.org/0000-0002-5752-5524</orcidid><orcidid>https://orcid.org/0000-0001-5297-4067</orcidid><orcidid>https://orcid.org/0000-0002-9145-5371</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-6458-8697</orcidid><orcidid>https://orcid.org/0000-0003-2887-3260</orcidid><orcidid>https://orcid.org/0000-0003-3797-8494</orcidid><orcidid>https://orcid.org/0000-0002-0882-064X</orcidid><orcidid>https://orcid.org/0000-0002-5391-5824</orcidid></search><sort><creationdate>2018</creationdate><title>Speed breeding is a powerful tool to accelerate crop research and breeding</title><author>Watson, Amy ; Ghosh, Sreya ; Williams, Matthew J. ; Cuddy, William S. ; Simmonds, James ; Rey, María-Dolores ; Asyraf Md Hatta, M. ; Hinchliffe, Alison ; Steed, Andrew ; Reynolds, Daniel ; Adamski, Nikolai M. ; Breakspear, Andy ; Korolev, Andrey ; Rayner, Tracey ; Dixon, Laura E. ; Riaz, Adnan ; Martin, William ; Ryan, Merrill ; Edwards, David ; Batley, Jacqueline ; Raman, Harsh ; Carter, Jeremy ; Rogers, Christian ; Domoney, Claire ; Moore, Graham ; Harwood, Wendy ; Nicholson, Paul ; Dieters, Mark J. ; DeLacy, Ian H. ; Zhou, Ji ; Uauy, Cristobal ; Boden, Scott A. ; Park, Robert F. ; Wulff, Brande B. H. ; Hickey, Lee T.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p212t-7a63dc09bd87684596d9fa295d51e4809e00a735054cb3e82666a7fd040c525a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>13/106</topic><topic>631/1647</topic><topic>631/449</topic><topic>631/449/1659</topic><topic>631/449/711</topic><topic>706/1143</topic><topic>82/47</topic><topic>Biomedical and Life Sciences</topic><topic>Brassica napus - genetics</topic><topic>Cicer - genetics</topic><topic>Crop improvement</topic><topic>Crops, Agricultural</topic><topic>Environmental changes</topic><topic>Food security</topic><topic>Genome editing</topic><topic>Growth chambers</topic><topic>Hordeum - genetics</topic><topic>Human populations</topic><topic>Letter</topic><topic>Life Sciences</topic><topic>Lighting</topic><topic>Phenotype</topic><topic>Pisum sativum - genetics</topic><topic>Plant Breeding</topic><topic>Plant Sciences</topic><topic>Spring wheat</topic><topic>Time Factors</topic><topic>Triticum - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Watson, Amy</creatorcontrib><creatorcontrib>Ghosh, Sreya</creatorcontrib><creatorcontrib>Williams, Matthew J.</creatorcontrib><creatorcontrib>Cuddy, William S.</creatorcontrib><creatorcontrib>Simmonds, James</creatorcontrib><creatorcontrib>Rey, María-Dolores</creatorcontrib><creatorcontrib>Asyraf Md Hatta, M.</creatorcontrib><creatorcontrib>Hinchliffe, Alison</creatorcontrib><creatorcontrib>Steed, Andrew</creatorcontrib><creatorcontrib>Reynolds, Daniel</creatorcontrib><creatorcontrib>Adamski, Nikolai M.</creatorcontrib><creatorcontrib>Breakspear, Andy</creatorcontrib><creatorcontrib>Korolev, Andrey</creatorcontrib><creatorcontrib>Rayner, Tracey</creatorcontrib><creatorcontrib>Dixon, Laura E.</creatorcontrib><creatorcontrib>Riaz, Adnan</creatorcontrib><creatorcontrib>Martin, William</creatorcontrib><creatorcontrib>Ryan, Merrill</creatorcontrib><creatorcontrib>Edwards, David</creatorcontrib><creatorcontrib>Batley, Jacqueline</creatorcontrib><creatorcontrib>Raman, Harsh</creatorcontrib><creatorcontrib>Carter, Jeremy</creatorcontrib><creatorcontrib>Rogers, Christian</creatorcontrib><creatorcontrib>Domoney, Claire</creatorcontrib><creatorcontrib>Moore, Graham</creatorcontrib><creatorcontrib>Harwood, Wendy</creatorcontrib><creatorcontrib>Nicholson, Paul</creatorcontrib><creatorcontrib>Dieters, Mark J.</creatorcontrib><creatorcontrib>DeLacy, Ian H.</creatorcontrib><creatorcontrib>Zhou, Ji</creatorcontrib><creatorcontrib>Uauy, Cristobal</creatorcontrib><creatorcontrib>Boden, Scott A.</creatorcontrib><creatorcontrib>Park, Robert F.</creatorcontrib><creatorcontrib>Wulff, Brande B. H.</creatorcontrib><creatorcontrib>Hickey, Lee T.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Ecology Abstracts</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><jtitle>Nature plants</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Watson, Amy</au><au>Ghosh, Sreya</au><au>Williams, Matthew J.</au><au>Cuddy, William S.</au><au>Simmonds, James</au><au>Rey, María-Dolores</au><au>Asyraf Md Hatta, M.</au><au>Hinchliffe, Alison</au><au>Steed, Andrew</au><au>Reynolds, Daniel</au><au>Adamski, Nikolai M.</au><au>Breakspear, Andy</au><au>Korolev, Andrey</au><au>Rayner, Tracey</au><au>Dixon, Laura E.</au><au>Riaz, Adnan</au><au>Martin, William</au><au>Ryan, Merrill</au><au>Edwards, David</au><au>Batley, Jacqueline</au><au>Raman, Harsh</au><au>Carter, Jeremy</au><au>Rogers, Christian</au><au>Domoney, Claire</au><au>Moore, Graham</au><au>Harwood, Wendy</au><au>Nicholson, Paul</au><au>Dieters, Mark J.</au><au>DeLacy, Ian H.</au><au>Zhou, Ji</au><au>Uauy, Cristobal</au><au>Boden, Scott A.</au><au>Park, Robert F.</au><au>Wulff, Brande B. H.</au><au>Hickey, Lee T.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Speed breeding is a powerful tool to accelerate crop research and breeding</atitle><jtitle>Nature plants</jtitle><stitle>Nature Plants</stitle><addtitle>Nat Plants</addtitle><date>2018</date><risdate>2018</risdate><volume>4</volume><issue>1</issue><spage>23</spage><epage>29</epage><pages>23-29</pages><eissn>2055-0278</eissn><abstract>The growing human population and a changing environment have raised significant concern for global food security, with the current improvement rate of several important crops inadequate to meet future demand 1 . This slow improvement rate is attributed partly to the long generation times of crop plants. Here, we present a method called ‘speed breeding’, which greatly shortens generation time and accelerates breeding and research programmes. Speed breeding can be used to achieve up to 6 generations per year for spring wheat ( Triticum aestivum ), durum wheat ( T. durum ), barley ( Hordeum vulgare ), chickpea ( Cicer arietinum ) and pea ( Pisum sativum ), and 4 generations for canola ( Brassica napus ), instead of 2–3 under normal glasshouse conditions. We demonstrate that speed breeding in fully enclosed, controlled-environment growth chambers can accelerate plant development for research purposes, including phenotyping of adult plant traits, mutant studies and transformation. The use of supplemental lighting in a glasshouse environment allows rapid generation cycling through single seed descent (SSD) and potential for adaptation to larger-scale crop improvement programs. Cost saving through light-emitting diode (LED) supplemental lighting is also outlined. We envisage great potential for integrating speed breeding with other modern crop breeding technologies, including high-throughput genotyping, genome editing and genomic selection, accelerating the rate of crop improvement. Fully enclosed, controlled-environment growth chambers can accelerate plant development. Such ‘speed breeding’ reduces generation times to accelerate crop breeding and research programmes, and can integrate with other modern crop breeding technologies.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>29292376</pmid><doi>10.1038/s41477-017-0083-8</doi><tpages>7</tpages><orcidid>https://orcid.org/0000-0002-4505-5895</orcidid><orcidid>https://orcid.org/0000-0002-8952-5684</orcidid><orcidid>https://orcid.org/0000-0002-9814-1770</orcidid><orcidid>https://orcid.org/0000-0001-7599-6760</orcidid><orcidid>https://orcid.org/0000-0001-6909-7101</orcidid><orcidid>https://orcid.org/0000-0002-7271-8914</orcidid><orcidid>https://orcid.org/0000-0002-5752-5524</orcidid><orcidid>https://orcid.org/0000-0001-5297-4067</orcidid><orcidid>https://orcid.org/0000-0002-9145-5371</orcidid><orcidid>https://orcid.org/0000-0003-4044-4346</orcidid><orcidid>https://orcid.org/0000-0002-6458-8697</orcidid><orcidid>https://orcid.org/0000-0003-2887-3260</orcidid><orcidid>https://orcid.org/0000-0003-3797-8494</orcidid><orcidid>https://orcid.org/0000-0002-0882-064X</orcidid><orcidid>https://orcid.org/0000-0002-5391-5824</orcidid></addata></record>
fulltext fulltext
identifier EISSN: 2055-0278
ispartof Nature plants, 2018, Vol.4 (1), p.23-29
issn 2055-0278
language eng
recordid cdi_proquest_miscellaneous_1983853723
source MEDLINE; Springer Online Journals
subjects 13/106
631/1647
631/449
631/449/1659
631/449/711
706/1143
82/47
Biomedical and Life Sciences
Brassica napus - genetics
Cicer - genetics
Crop improvement
Crops, Agricultural
Environmental changes
Food security
Genome editing
Growth chambers
Hordeum - genetics
Human populations
Letter
Life Sciences
Lighting
Phenotype
Pisum sativum - genetics
Plant Breeding
Plant Sciences
Spring wheat
Time Factors
Triticum - genetics
title Speed breeding is a powerful tool to accelerate crop research and breeding
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T19%3A50%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Speed%20breeding%20is%20a%20powerful%20tool%20to%20accelerate%20crop%20research%20and%20breeding&rft.jtitle=Nature%20plants&rft.au=Watson,%20Amy&rft.date=2018&rft.volume=4&rft.issue=1&rft.spage=23&rft.epage=29&rft.pages=23-29&rft.eissn=2055-0278&rft_id=info:doi/10.1038/s41477-017-0083-8&rft_dat=%3Cproquest_pubme%3E2161919696%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2161919696&rft_id=info:pmid/29292376&rfr_iscdi=true