A novel role of circadian transcription factor DBP in hippocampal plasticity
In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis...
Gespeichert in:
Veröffentlicht in: | Molecular and cellular neuroscience 2006-02, Vol.31 (2), p.303-314 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 314 |
---|---|
container_issue | 2 |
container_start_page | 303 |
container_title | Molecular and cellular neuroscience |
container_volume | 31 |
creator | Klugmann, Matthias Leichtlein, Claudia B. Symes, C. Wymond Klaussner, Bettina C. Brooks, Andrew I. Young, Deborah During, Matthew J. |
description | In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus. |
doi_str_mv | 10.1016/j.mcn.2005.09.019 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19835163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743105002435</els_id><sourcerecordid>19835163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EgvL4ASzIE1uCH7HTiKmUp1QJBpgt5-ZauEriYKdI_HtStRIb0z3Dd450P0IuOcs54_pmnXfQ54IxlbMqZ7w6IDPOKpVVUpSH21wUWVlIfkJOU1qzCRSVPCYnXAtVCqFnZLWgffjGlsbQIg2Ogo9gG297OkbbJ4h-GH3oqbMwhkjv796o7-mnH4YAthtsS4fWptGDH3_OyZGzbcKL_T0jH48P78vnbPX69LJcrDKQczFmZQ22VLbGorSASjs5r1FJJaXQGvhcaFVarZjCphJWaXDW1RNYMu20g1qekevd7hDD1wbTaDqfANvW9hg2yfBqLhXXcgL5DoQYUorozBB9Z-OP4cxsFZq1mRSarULDKjMpnDpX-_FN3WHz19g7m4DbHYDTi98eo0ngsQdsfEQYTRP8P_O_y6-CLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19835163</pqid></control><display><type>article</type><title>A novel role of circadian transcription factor DBP in hippocampal plasticity</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Klugmann, Matthias ; Leichtlein, Claudia B. ; Symes, C. Wymond ; Klaussner, Bettina C. ; Brooks, Andrew I. ; Young, Deborah ; During, Matthew J.</creator><creatorcontrib>Klugmann, Matthias ; Leichtlein, Claudia B. ; Symes, C. Wymond ; Klaussner, Bettina C. ; Brooks, Andrew I. ; Young, Deborah ; During, Matthew J.</creatorcontrib><description>In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2005.09.019</identifier><identifier>PMID: 16257226</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adeno-associated virus ; Animals ; Biological Clocks - physiology ; Circadian Rhythm - physiology ; Dependovirus - genetics ; Dependovirus - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Glucagon-Like Peptide-1 Receptor ; Hippocampus - cytology ; Hippocampus - physiology ; Kainic Acid - metabolism ; Learning - physiology ; Memory - physiology ; Motor Activity - physiology ; Neuronal Plasticity - physiology ; Neurons - metabolism ; Rats ; Receptors, Glucagon - genetics ; Receptors, Glucagon - metabolism ; Seizures - chemically induced ; Signal Transduction - physiology ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular and cellular neuroscience, 2006-02, Vol.31 (2), p.303-314</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</citedby><cites>FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2005.09.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16257226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klugmann, Matthias</creatorcontrib><creatorcontrib>Leichtlein, Claudia B.</creatorcontrib><creatorcontrib>Symes, C. Wymond</creatorcontrib><creatorcontrib>Klaussner, Bettina C.</creatorcontrib><creatorcontrib>Brooks, Andrew I.</creatorcontrib><creatorcontrib>Young, Deborah</creatorcontrib><creatorcontrib>During, Matthew J.</creatorcontrib><title>A novel role of circadian transcription factor DBP in hippocampal plasticity</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Biological Clocks - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzyme Activation</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Glucagon-Like Peptide-1 Receptor</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Kainic Acid - metabolism</subject><subject>Learning - physiology</subject><subject>Memory - physiology</subject><subject>Motor Activity - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - metabolism</subject><subject>Rats</subject><subject>Receptors, Glucagon - genetics</subject><subject>Receptors, Glucagon - metabolism</subject><subject>Seizures - chemically induced</subject><subject>Signal Transduction - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAUhS0EgvL4ASzIE1uCH7HTiKmUp1QJBpgt5-ZauEriYKdI_HtStRIb0z3Dd450P0IuOcs54_pmnXfQ54IxlbMqZ7w6IDPOKpVVUpSH21wUWVlIfkJOU1qzCRSVPCYnXAtVCqFnZLWgffjGlsbQIg2Ogo9gG297OkbbJ4h-GH3oqbMwhkjv796o7-mnH4YAthtsS4fWptGDH3_OyZGzbcKL_T0jH48P78vnbPX69LJcrDKQczFmZQ22VLbGorSASjs5r1FJJaXQGvhcaFVarZjCphJWaXDW1RNYMu20g1qekevd7hDD1wbTaDqfANvW9hg2yfBqLhXXcgL5DoQYUorozBB9Z-OP4cxsFZq1mRSarULDKjMpnDpX-_FN3WHz19g7m4DbHYDTi98eo0ngsQdsfEQYTRP8P_O_y6-CLg</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Klugmann, Matthias</creator><creator>Leichtlein, Claudia B.</creator><creator>Symes, C. Wymond</creator><creator>Klaussner, Bettina C.</creator><creator>Brooks, Andrew I.</creator><creator>Young, Deborah</creator><creator>During, Matthew J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20060201</creationdate><title>A novel role of circadian transcription factor DBP in hippocampal plasticity</title><author>Klugmann, Matthias ; Leichtlein, Claudia B. ; Symes, C. Wymond ; Klaussner, Bettina C. ; Brooks, Andrew I. ; Young, Deborah ; During, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Biological Clocks - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzyme Activation</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Glucagon-Like Peptide-1 Receptor</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Kainic Acid - metabolism</topic><topic>Learning - physiology</topic><topic>Memory - physiology</topic><topic>Motor Activity - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - metabolism</topic><topic>Rats</topic><topic>Receptors, Glucagon - genetics</topic><topic>Receptors, Glucagon - metabolism</topic><topic>Seizures - chemically induced</topic><topic>Signal Transduction - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klugmann, Matthias</creatorcontrib><creatorcontrib>Leichtlein, Claudia B.</creatorcontrib><creatorcontrib>Symes, C. Wymond</creatorcontrib><creatorcontrib>Klaussner, Bettina C.</creatorcontrib><creatorcontrib>Brooks, Andrew I.</creatorcontrib><creatorcontrib>Young, Deborah</creatorcontrib><creatorcontrib>During, Matthew J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klugmann, Matthias</au><au>Leichtlein, Claudia B.</au><au>Symes, C. Wymond</au><au>Klaussner, Bettina C.</au><au>Brooks, Andrew I.</au><au>Young, Deborah</au><au>During, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel role of circadian transcription factor DBP in hippocampal plasticity</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>31</volume><issue>2</issue><spage>303</spage><epage>314</epage><pages>303-314</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16257226</pmid><doi>10.1016/j.mcn.2005.09.019</doi><tpages>12</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1044-7431 |
ispartof | Molecular and cellular neuroscience, 2006-02, Vol.31 (2), p.303-314 |
issn | 1044-7431 1095-9327 |
language | eng |
recordid | cdi_proquest_miscellaneous_19835163 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Adeno-associated virus Animals Biological Clocks - physiology Circadian Rhythm - physiology Dependovirus - genetics Dependovirus - metabolism DNA-Binding Proteins - genetics DNA-Binding Proteins - metabolism Enzyme Activation Extracellular Signal-Regulated MAP Kinases - metabolism Glucagon-Like Peptide-1 Receptor Hippocampus - cytology Hippocampus - physiology Kainic Acid - metabolism Learning - physiology Memory - physiology Motor Activity - physiology Neuronal Plasticity - physiology Neurons - metabolism Rats Receptors, Glucagon - genetics Receptors, Glucagon - metabolism Seizures - chemically induced Signal Transduction - physiology Transcription Factors - genetics Transcription Factors - metabolism Transcription, Genetic |
title | A novel role of circadian transcription factor DBP in hippocampal plasticity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20role%20of%20circadian%20transcription%20factor%20DBP%20in%20hippocampal%20plasticity&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Klugmann,%20Matthias&rft.date=2006-02-01&rft.volume=31&rft.issue=2&rft.spage=303&rft.epage=314&rft.pages=303-314&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2005.09.019&rft_dat=%3Cproquest_cross%3E19835163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19835163&rft_id=info:pmid/16257226&rft_els_id=S1044743105002435&rfr_iscdi=true |