A novel role of circadian transcription factor DBP in hippocampal plasticity

In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Molecular and cellular neuroscience 2006-02, Vol.31 (2), p.303-314
Hauptverfasser: Klugmann, Matthias, Leichtlein, Claudia B., Symes, C. Wymond, Klaussner, Bettina C., Brooks, Andrew I., Young, Deborah, During, Matthew J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 314
container_issue 2
container_start_page 303
container_title Molecular and cellular neuroscience
container_volume 31
creator Klugmann, Matthias
Leichtlein, Claudia B.
Symes, C. Wymond
Klaussner, Bettina C.
Brooks, Andrew I.
Young, Deborah
During, Matthew J.
description In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus.
doi_str_mv 10.1016/j.mcn.2005.09.019
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19835163</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1044743105002435</els_id><sourcerecordid>19835163</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</originalsourceid><addsrcrecordid>eNp9kDtPwzAUhS0EgvL4ASzIE1uCH7HTiKmUp1QJBpgt5-ZauEriYKdI_HtStRIb0z3Dd450P0IuOcs54_pmnXfQ54IxlbMqZ7w6IDPOKpVVUpSH21wUWVlIfkJOU1qzCRSVPCYnXAtVCqFnZLWgffjGlsbQIg2Ogo9gG297OkbbJ4h-GH3oqbMwhkjv796o7-mnH4YAthtsS4fWptGDH3_OyZGzbcKL_T0jH48P78vnbPX69LJcrDKQczFmZQ22VLbGorSASjs5r1FJJaXQGvhcaFVarZjCphJWaXDW1RNYMu20g1qekevd7hDD1wbTaDqfANvW9hg2yfBqLhXXcgL5DoQYUorozBB9Z-OP4cxsFZq1mRSarULDKjMpnDpX-_FN3WHz19g7m4DbHYDTi98eo0ngsQdsfEQYTRP8P_O_y6-CLg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19835163</pqid></control><display><type>article</type><title>A novel role of circadian transcription factor DBP in hippocampal plasticity</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Klugmann, Matthias ; Leichtlein, Claudia B. ; Symes, C. Wymond ; Klaussner, Bettina C. ; Brooks, Andrew I. ; Young, Deborah ; During, Matthew J.</creator><creatorcontrib>Klugmann, Matthias ; Leichtlein, Claudia B. ; Symes, C. Wymond ; Klaussner, Bettina C. ; Brooks, Andrew I. ; Young, Deborah ; During, Matthew J.</creatorcontrib><description>In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus.</description><identifier>ISSN: 1044-7431</identifier><identifier>EISSN: 1095-9327</identifier><identifier>DOI: 10.1016/j.mcn.2005.09.019</identifier><identifier>PMID: 16257226</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adeno-associated virus ; Animals ; Biological Clocks - physiology ; Circadian Rhythm - physiology ; Dependovirus - genetics ; Dependovirus - metabolism ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Enzyme Activation ; Extracellular Signal-Regulated MAP Kinases - metabolism ; Glucagon-Like Peptide-1 Receptor ; Hippocampus - cytology ; Hippocampus - physiology ; Kainic Acid - metabolism ; Learning - physiology ; Memory - physiology ; Motor Activity - physiology ; Neuronal Plasticity - physiology ; Neurons - metabolism ; Rats ; Receptors, Glucagon - genetics ; Receptors, Glucagon - metabolism ; Seizures - chemically induced ; Signal Transduction - physiology ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Molecular and cellular neuroscience, 2006-02, Vol.31 (2), p.303-314</ispartof><rights>2005 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</citedby><cites>FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.mcn.2005.09.019$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16257226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Klugmann, Matthias</creatorcontrib><creatorcontrib>Leichtlein, Claudia B.</creatorcontrib><creatorcontrib>Symes, C. Wymond</creatorcontrib><creatorcontrib>Klaussner, Bettina C.</creatorcontrib><creatorcontrib>Brooks, Andrew I.</creatorcontrib><creatorcontrib>Young, Deborah</creatorcontrib><creatorcontrib>During, Matthew J.</creatorcontrib><title>A novel role of circadian transcription factor DBP in hippocampal plasticity</title><title>Molecular and cellular neuroscience</title><addtitle>Mol Cell Neurosci</addtitle><description>In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus.</description><subject>Adeno-associated virus</subject><subject>Animals</subject><subject>Biological Clocks - physiology</subject><subject>Circadian Rhythm - physiology</subject><subject>Dependovirus - genetics</subject><subject>Dependovirus - metabolism</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Enzyme Activation</subject><subject>Extracellular Signal-Regulated MAP Kinases - metabolism</subject><subject>Glucagon-Like Peptide-1 Receptor</subject><subject>Hippocampus - cytology</subject><subject>Hippocampus - physiology</subject><subject>Kainic Acid - metabolism</subject><subject>Learning - physiology</subject><subject>Memory - physiology</subject><subject>Motor Activity - physiology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - metabolism</subject><subject>Rats</subject><subject>Receptors, Glucagon - genetics</subject><subject>Receptors, Glucagon - metabolism</subject><subject>Seizures - chemically induced</subject><subject>Signal Transduction - physiology</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1044-7431</issn><issn>1095-9327</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kDtPwzAUhS0EgvL4ASzIE1uCH7HTiKmUp1QJBpgt5-ZauEriYKdI_HtStRIb0z3Dd450P0IuOcs54_pmnXfQ54IxlbMqZ7w6IDPOKpVVUpSH21wUWVlIfkJOU1qzCRSVPCYnXAtVCqFnZLWgffjGlsbQIg2Ogo9gG297OkbbJ4h-GH3oqbMwhkjv796o7-mnH4YAthtsS4fWptGDH3_OyZGzbcKL_T0jH48P78vnbPX69LJcrDKQczFmZQ22VLbGorSASjs5r1FJJaXQGvhcaFVarZjCphJWaXDW1RNYMu20g1qekevd7hDD1wbTaDqfANvW9hg2yfBqLhXXcgL5DoQYUorozBB9Z-OP4cxsFZq1mRSarULDKjMpnDpX-_FN3WHz19g7m4DbHYDTi98eo0ngsQdsfEQYTRP8P_O_y6-CLg</recordid><startdate>20060201</startdate><enddate>20060201</enddate><creator>Klugmann, Matthias</creator><creator>Leichtlein, Claudia B.</creator><creator>Symes, C. Wymond</creator><creator>Klaussner, Bettina C.</creator><creator>Brooks, Andrew I.</creator><creator>Young, Deborah</creator><creator>During, Matthew J.</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>H94</scope></search><sort><creationdate>20060201</creationdate><title>A novel role of circadian transcription factor DBP in hippocampal plasticity</title><author>Klugmann, Matthias ; Leichtlein, Claudia B. ; Symes, C. Wymond ; Klaussner, Bettina C. ; Brooks, Andrew I. ; Young, Deborah ; During, Matthew J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-7bca75abe47ace56f38be53533266c182657a6505ed92a56cfafbce5706f6fcb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Adeno-associated virus</topic><topic>Animals</topic><topic>Biological Clocks - physiology</topic><topic>Circadian Rhythm - physiology</topic><topic>Dependovirus - genetics</topic><topic>Dependovirus - metabolism</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Enzyme Activation</topic><topic>Extracellular Signal-Regulated MAP Kinases - metabolism</topic><topic>Glucagon-Like Peptide-1 Receptor</topic><topic>Hippocampus - cytology</topic><topic>Hippocampus - physiology</topic><topic>Kainic Acid - metabolism</topic><topic>Learning - physiology</topic><topic>Memory - physiology</topic><topic>Motor Activity - physiology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - metabolism</topic><topic>Rats</topic><topic>Receptors, Glucagon - genetics</topic><topic>Receptors, Glucagon - metabolism</topic><topic>Seizures - chemically induced</topic><topic>Signal Transduction - physiology</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Klugmann, Matthias</creatorcontrib><creatorcontrib>Leichtlein, Claudia B.</creatorcontrib><creatorcontrib>Symes, C. Wymond</creatorcontrib><creatorcontrib>Klaussner, Bettina C.</creatorcontrib><creatorcontrib>Brooks, Andrew I.</creatorcontrib><creatorcontrib>Young, Deborah</creatorcontrib><creatorcontrib>During, Matthew J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><jtitle>Molecular and cellular neuroscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Klugmann, Matthias</au><au>Leichtlein, Claudia B.</au><au>Symes, C. Wymond</au><au>Klaussner, Bettina C.</au><au>Brooks, Andrew I.</au><au>Young, Deborah</au><au>During, Matthew J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel role of circadian transcription factor DBP in hippocampal plasticity</atitle><jtitle>Molecular and cellular neuroscience</jtitle><addtitle>Mol Cell Neurosci</addtitle><date>2006-02-01</date><risdate>2006</risdate><volume>31</volume><issue>2</issue><spage>303</spage><epage>314</epage><pages>303-314</pages><issn>1044-7431</issn><eissn>1095-9327</eissn><abstract>In neurons, a variety of extracellular stimuli are capable of inducing transcriptional events that underlie complex processes ranging from learning to disease. The mechanisms linking these long-lasting cellular modifications to behavior remain to be established. Here, we show by microarray analysis that hippocampal activation of glucagon-like peptide-1 receptor (GLP-1R), which is associated with improved learning and neuroprotection, results in suppression of the transcription factor DBP (albumin D-site-binding protein). Recombinant adeno-associated virus (rAAV) based gene expression of DBP in the hippocampus of adult rats caused upregulation of mRNAs encoding constituents of the molecular clock, and the DBP target gene, pyridoxal kinase. Behaviorally, DBP over expression inhibited spatial learning but not memory, and enhanced susceptibility to kainate-induced seizures. This phenotype was paralleled by the activation of MAP kinase in dendritic regions of hippocampal neurons in vivo. These data suggest that DBP may represent an important transcriptional link between GLP-1R activation and neuroplasticity in the hippocampus.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>16257226</pmid><doi>10.1016/j.mcn.2005.09.019</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1044-7431
ispartof Molecular and cellular neuroscience, 2006-02, Vol.31 (2), p.303-314
issn 1044-7431
1095-9327
language eng
recordid cdi_proquest_miscellaneous_19835163
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Adeno-associated virus
Animals
Biological Clocks - physiology
Circadian Rhythm - physiology
Dependovirus - genetics
Dependovirus - metabolism
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Enzyme Activation
Extracellular Signal-Regulated MAP Kinases - metabolism
Glucagon-Like Peptide-1 Receptor
Hippocampus - cytology
Hippocampus - physiology
Kainic Acid - metabolism
Learning - physiology
Memory - physiology
Motor Activity - physiology
Neuronal Plasticity - physiology
Neurons - metabolism
Rats
Receptors, Glucagon - genetics
Receptors, Glucagon - metabolism
Seizures - chemically induced
Signal Transduction - physiology
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title A novel role of circadian transcription factor DBP in hippocampal plasticity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T03%3A59%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20role%20of%20circadian%20transcription%20factor%20DBP%20in%20hippocampal%20plasticity&rft.jtitle=Molecular%20and%20cellular%20neuroscience&rft.au=Klugmann,%20Matthias&rft.date=2006-02-01&rft.volume=31&rft.issue=2&rft.spage=303&rft.epage=314&rft.pages=303-314&rft.issn=1044-7431&rft.eissn=1095-9327&rft_id=info:doi/10.1016/j.mcn.2005.09.019&rft_dat=%3Cproquest_cross%3E19835163%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19835163&rft_id=info:pmid/16257226&rft_els_id=S1044743105002435&rfr_iscdi=true