Enhanced cell trapping throughput using DC‐biased AC electric field in a dielectrophoresis‐based fluidic device with densely packed silica beads
This paper presents the use of DC‐biased AC electric field for enhancing cell trapping throughput in an insulator‐based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure‐driven flow. Under an applied DC‐biased A...
Gespeichert in:
Veröffentlicht in: | Electrophoresis 2018-03, Vol.39 (5-6), p.878-886 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 886 |
---|---|
container_issue | 5-6 |
container_start_page | 878 |
container_title | Electrophoresis |
container_volume | 39 |
creator | Lewpiriyawong, Nuttawut Xu, Guolin Yang, Chun |
description | This paper presents the use of DC‐biased AC electric field for enhancing cell trapping throughput in an insulator‐based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure‐driven flow. Under an applied DC‐biased AC electric field, DEP trapping force is produced as a result of non‐uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure‐driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC‐biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells. |
doi_str_mv | 10.1002/elps.201700395 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1982840805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982840805</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4051-d4a95b387d055ae0f019d1e99debfa4f8f95e068838b641f6748be5667b09e8f3</originalsourceid><addsrcrecordid>eNqFkTGP1DAQhS0E4paDlhJZoqHJMnbsrF2elj1AWgkkoI6ceHzx4U2CnXDajp9wBb-QX4LDHlfQUM3o6XtPo3mEPGewZgD8NYYxrTmwDUCp5QOyYpLzgleqfEhWWS4LUKU8I09SugYAoYV4TM645kpJJVfk567vTN-ipS2GQKdoxtH3V3Tq4jBfdeM80Tktwpvtrx-3jTcpoxdbigHbKfqWOo_BUt9TQ60_qcPYDRGTT4vjj8GF2dsMW_zuW6Q3fury3icMRzqa9mtGkg--NbRBY9NT8siZkPDZ3TwnXy53n7fviv2Ht--3F_uiFSBZYYXRsinVxoKUBsEB05ah1hYbZ4RTTkuESqlSNZVgrtoI1aCsqk0DGpUrz8mrU-4Yh28zpqk--LT8wfQ4zKlmWnElQIHM6Mt_0Othjn2-ruYAminJS5ap9Ylq45BSRFeP0R9MPNYM6qWveumrvu8rG17cxc7NAe09_regDIgTcOMDHv8TV-_2Hz9VAlj5G9lapKk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009185231</pqid></control><display><type>article</type><title>Enhanced cell trapping throughput using DC‐biased AC electric field in a dielectrophoresis‐based fluidic device with densely packed silica beads</title><source>Wiley Online Library All Journals</source><creator>Lewpiriyawong, Nuttawut ; Xu, Guolin ; Yang, Chun</creator><creatorcontrib>Lewpiriyawong, Nuttawut ; Xu, Guolin ; Yang, Chun</creatorcontrib><description>This paper presents the use of DC‐biased AC electric field for enhancing cell trapping throughput in an insulator‐based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure‐driven flow. Under an applied DC‐biased AC electric field, DEP trapping force is produced as a result of non‐uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure‐driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC‐biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells.</description><identifier>ISSN: 0173-0835</identifier><identifier>EISSN: 1522-2683</identifier><identifier>DOI: 10.1002/elps.201700395</identifier><identifier>PMID: 29288585</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Beads ; Cell trapping ; Computer simulation ; DC‐biased AC electric field ; Dielectrophoresis ; Direct current ; Electric fields ; Finite element method ; Silicon dioxide ; Trapping ; Yeast</subject><ispartof>Electrophoresis, 2018-03, Vol.39 (5-6), p.878-886</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2018 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4051-d4a95b387d055ae0f019d1e99debfa4f8f95e068838b641f6748be5667b09e8f3</citedby><cites>FETCH-LOGICAL-c4051-d4a95b387d055ae0f019d1e99debfa4f8f95e068838b641f6748be5667b09e8f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Felps.201700395$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Felps.201700395$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29288585$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lewpiriyawong, Nuttawut</creatorcontrib><creatorcontrib>Xu, Guolin</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><title>Enhanced cell trapping throughput using DC‐biased AC electric field in a dielectrophoresis‐based fluidic device with densely packed silica beads</title><title>Electrophoresis</title><addtitle>Electrophoresis</addtitle><description>This paper presents the use of DC‐biased AC electric field for enhancing cell trapping throughput in an insulator‐based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure‐driven flow. Under an applied DC‐biased AC electric field, DEP trapping force is produced as a result of non‐uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure‐driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC‐biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells.</description><subject>Beads</subject><subject>Cell trapping</subject><subject>Computer simulation</subject><subject>DC‐biased AC electric field</subject><subject>Dielectrophoresis</subject><subject>Direct current</subject><subject>Electric fields</subject><subject>Finite element method</subject><subject>Silicon dioxide</subject><subject>Trapping</subject><subject>Yeast</subject><issn>0173-0835</issn><issn>1522-2683</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkTGP1DAQhS0E4paDlhJZoqHJMnbsrF2elj1AWgkkoI6ceHzx4U2CnXDajp9wBb-QX4LDHlfQUM3o6XtPo3mEPGewZgD8NYYxrTmwDUCp5QOyYpLzgleqfEhWWS4LUKU8I09SugYAoYV4TM645kpJJVfk567vTN-ipS2GQKdoxtH3V3Tq4jBfdeM80Tktwpvtrx-3jTcpoxdbigHbKfqWOo_BUt9TQ60_qcPYDRGTT4vjj8GF2dsMW_zuW6Q3fury3icMRzqa9mtGkg--NbRBY9NT8siZkPDZ3TwnXy53n7fviv2Ht--3F_uiFSBZYYXRsinVxoKUBsEB05ah1hYbZ4RTTkuESqlSNZVgrtoI1aCsqk0DGpUrz8mrU-4Yh28zpqk--LT8wfQ4zKlmWnElQIHM6Mt_0Othjn2-ruYAminJS5ap9Ylq45BSRFeP0R9MPNYM6qWveumrvu8rG17cxc7NAe09_regDIgTcOMDHv8TV-_2Hz9VAlj5G9lapKk</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Lewpiriyawong, Nuttawut</creator><creator>Xu, Guolin</creator><creator>Yang, Chun</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>Enhanced cell trapping throughput using DC‐biased AC electric field in a dielectrophoresis‐based fluidic device with densely packed silica beads</title><author>Lewpiriyawong, Nuttawut ; Xu, Guolin ; Yang, Chun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4051-d4a95b387d055ae0f019d1e99debfa4f8f95e068838b641f6748be5667b09e8f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Beads</topic><topic>Cell trapping</topic><topic>Computer simulation</topic><topic>DC‐biased AC electric field</topic><topic>Dielectrophoresis</topic><topic>Direct current</topic><topic>Electric fields</topic><topic>Finite element method</topic><topic>Silicon dioxide</topic><topic>Trapping</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lewpiriyawong, Nuttawut</creatorcontrib><creatorcontrib>Xu, Guolin</creatorcontrib><creatorcontrib>Yang, Chun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Electrophoresis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lewpiriyawong, Nuttawut</au><au>Xu, Guolin</au><au>Yang, Chun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced cell trapping throughput using DC‐biased AC electric field in a dielectrophoresis‐based fluidic device with densely packed silica beads</atitle><jtitle>Electrophoresis</jtitle><addtitle>Electrophoresis</addtitle><date>2018-03</date><risdate>2018</risdate><volume>39</volume><issue>5-6</issue><spage>878</spage><epage>886</epage><pages>878-886</pages><issn>0173-0835</issn><eissn>1522-2683</eissn><abstract>This paper presents the use of DC‐biased AC electric field for enhancing cell trapping throughput in an insulator‐based dielectrophoretic (iDEP) fluidic device with densely packed silica beads. Cell suspension is carried through the iDEP device by a pressure‐driven flow. Under an applied DC‐biased AC electric field, DEP trapping force is produced as a result of non‐uniform electric field induced by the gap of electrically insulating silica beads packed between two mesh electrodes that allow both fluid and cells to pass through. While the AC component is mainly to control the magnitude of DEP trapping force, the DC component generates local electroosmotic (EO) flow in the cavity between the beads and the EO flow can be set to move along or against the main pressure‐driven flow. Our experimental and simulation results show that desirable trapping is achieved when the EO flow direction is along (not against) the main flow direction. Using our proposed DC‐biased AC field, the device can enhance the trapping throughput (in terms of the flowrate of cell suspension) up to five times while yielding almost the same cell capture rates as compared to the pure AC field case. Additionally, the device was demonstrated to selectively trap dead yeast cells from a mixture of flowing live and dead yeast cells.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29288585</pmid><doi>10.1002/elps.201700395</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0173-0835 |
ispartof | Electrophoresis, 2018-03, Vol.39 (5-6), p.878-886 |
issn | 0173-0835 1522-2683 |
language | eng |
recordid | cdi_proquest_miscellaneous_1982840805 |
source | Wiley Online Library All Journals |
subjects | Beads Cell trapping Computer simulation DC‐biased AC electric field Dielectrophoresis Direct current Electric fields Finite element method Silicon dioxide Trapping Yeast |
title | Enhanced cell trapping throughput using DC‐biased AC electric field in a dielectrophoresis‐based fluidic device with densely packed silica beads |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T19%3A26%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20cell%20trapping%20throughput%20using%20DC%E2%80%90biased%20AC%20electric%20field%20in%20a%20dielectrophoresis%E2%80%90based%20fluidic%20device%20with%20densely%20packed%20silica%20beads&rft.jtitle=Electrophoresis&rft.au=Lewpiriyawong,%20Nuttawut&rft.date=2018-03&rft.volume=39&rft.issue=5-6&rft.spage=878&rft.epage=886&rft.pages=878-886&rft.issn=0173-0835&rft.eissn=1522-2683&rft_id=info:doi/10.1002/elps.201700395&rft_dat=%3Cproquest_cross%3E1982840805%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009185231&rft_id=info:pmid/29288585&rfr_iscdi=true |