Essentially Entropic Lattice Boltzmann Model

The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Physical review letters 2017-12, Vol.119 (24), p.240602-240602, Article 240602
Hauptverfasser: Atif, Mohammad, Kolluru, Praveen Kumar, Thantanapally, Chakradhar, Ansumali, Santosh
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 240602
container_issue 24
container_start_page 240602
container_title Physical review letters
container_volume 119
creator Atif, Mohammad
Kolluru, Praveen Kumar
Thantanapally, Chakradhar
Ansumali, Santosh
description The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88×10^{6}.
doi_str_mv 10.1103/PhysRevLett.119.240602
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1982840610</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1982840610</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-97e74e17a4df03e548acdb830ccc8b6223a559b960a06d6a743e9afeea9ace943</originalsourceid><addsrcrecordid>eNpNkEtLw0AUhQdRbK3-hZKlC1PvPDqPpZb4gIgiuh4mkxuM5FEzU6H-eiOt4urC4Z5zOB8hcwoLSoFfPr1twzN-5hjjKJgFEyCBHZApBWVSRak4JFMATlMDoCbkJIR3AKBM6mMyYYZpqaiZkossBOxi7Zpmm2RdHPp17ZPcxVh7TK77Jn61ruuSh77E5pQcVa4JeLa_M_J6k72s7tL88fZ-dZWnnksRU6NQCaTKibICjkuhnS8LzcF7rwvJGHfLpSmMBAeylE4JjsZViM44j0bwGTnf5a6H_mODIdq2Dh6bxnXYb4KlRjM9Dh5BzIjcvfqhD2HAyq6HunXD1lKwP6TsP1KjYOyO1Gic7zs2RYvln-0XDf8GmRdnXw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1982840610</pqid></control><display><type>article</type><title>Essentially Entropic Lattice Boltzmann Model</title><source>American Physical Society Journals</source><creator>Atif, Mohammad ; Kolluru, Praveen Kumar ; Thantanapally, Chakradhar ; Ansumali, Santosh</creator><creatorcontrib>Atif, Mohammad ; Kolluru, Praveen Kumar ; Thantanapally, Chakradhar ; Ansumali, Santosh</creatorcontrib><description>The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88×10^{6}.</description><identifier>ISSN: 0031-9007</identifier><identifier>EISSN: 1079-7114</identifier><identifier>DOI: 10.1103/PhysRevLett.119.240602</identifier><identifier>PMID: 29286719</identifier><language>eng</language><publisher>United States</publisher><ispartof>Physical review letters, 2017-12, Vol.119 (24), p.240602-240602, Article 240602</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-97e74e17a4df03e548acdb830ccc8b6223a559b960a06d6a743e9afeea9ace943</citedby><cites>FETCH-LOGICAL-c364t-97e74e17a4df03e548acdb830ccc8b6223a559b960a06d6a743e9afeea9ace943</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,2876,2877,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29286719$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Atif, Mohammad</creatorcontrib><creatorcontrib>Kolluru, Praveen Kumar</creatorcontrib><creatorcontrib>Thantanapally, Chakradhar</creatorcontrib><creatorcontrib>Ansumali, Santosh</creatorcontrib><title>Essentially Entropic Lattice Boltzmann Model</title><title>Physical review letters</title><addtitle>Phys Rev Lett</addtitle><description>The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88×10^{6}.</description><issn>0031-9007</issn><issn>1079-7114</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><recordid>eNpNkEtLw0AUhQdRbK3-hZKlC1PvPDqPpZb4gIgiuh4mkxuM5FEzU6H-eiOt4urC4Z5zOB8hcwoLSoFfPr1twzN-5hjjKJgFEyCBHZApBWVSRak4JFMATlMDoCbkJIR3AKBM6mMyYYZpqaiZkossBOxi7Zpmm2RdHPp17ZPcxVh7TK77Jn61ruuSh77E5pQcVa4JeLa_M_J6k72s7tL88fZ-dZWnnksRU6NQCaTKibICjkuhnS8LzcF7rwvJGHfLpSmMBAeylE4JjsZViM44j0bwGTnf5a6H_mODIdq2Dh6bxnXYb4KlRjM9Dh5BzIjcvfqhD2HAyq6HunXD1lKwP6TsP1KjYOyO1Gic7zs2RYvln-0XDf8GmRdnXw</recordid><startdate>20171215</startdate><enddate>20171215</enddate><creator>Atif, Mohammad</creator><creator>Kolluru, Praveen Kumar</creator><creator>Thantanapally, Chakradhar</creator><creator>Ansumali, Santosh</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20171215</creationdate><title>Essentially Entropic Lattice Boltzmann Model</title><author>Atif, Mohammad ; Kolluru, Praveen Kumar ; Thantanapally, Chakradhar ; Ansumali, Santosh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-97e74e17a4df03e548acdb830ccc8b6223a559b960a06d6a743e9afeea9ace943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atif, Mohammad</creatorcontrib><creatorcontrib>Kolluru, Praveen Kumar</creatorcontrib><creatorcontrib>Thantanapally, Chakradhar</creatorcontrib><creatorcontrib>Ansumali, Santosh</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Physical review letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atif, Mohammad</au><au>Kolluru, Praveen Kumar</au><au>Thantanapally, Chakradhar</au><au>Ansumali, Santosh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Essentially Entropic Lattice Boltzmann Model</atitle><jtitle>Physical review letters</jtitle><addtitle>Phys Rev Lett</addtitle><date>2017-12-15</date><risdate>2017</risdate><volume>119</volume><issue>24</issue><spage>240602</spage><epage>240602</epage><pages>240602-240602</pages><artnum>240602</artnum><issn>0031-9007</issn><eissn>1079-7114</eissn><abstract>The entropic lattice Boltzmann model (ELBM), a discrete space-time kinetic theory for hydrodynamics, ensures nonlinear stability via the discrete time version of the second law of thermodynamics (the H theorem). Compliance with the H theorem is numerically enforced in this methodology and involves a search for the maximal discrete path length corresponding to the zero dissipation state by iteratively solving a nonlinear equation. We demonstrate that an exact solution for the path length can be obtained by assuming a natural criterion of negative entropy change, thereby reducing the problem to solving an inequality. This inequality is solved by creating a new framework for construction of Padé approximants via quadrature on appropriate convex function. This exact solution also resolves the issue of indeterminacy in case of nonexistence of the entropic involution step. Since our formulation is devoid of complex mathematical library functions, the computational cost is drastically reduced. To illustrate this, we have simulated a model setup of flow over the NACA-0012 airfoil at a Reynolds number of 2.88×10^{6}.</abstract><cop>United States</cop><pmid>29286719</pmid><doi>10.1103/PhysRevLett.119.240602</doi><tpages>1</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0031-9007
ispartof Physical review letters, 2017-12, Vol.119 (24), p.240602-240602, Article 240602
issn 0031-9007
1079-7114
language eng
recordid cdi_proquest_miscellaneous_1982840610
source American Physical Society Journals
title Essentially Entropic Lattice Boltzmann Model
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A02%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Essentially%20Entropic%20Lattice%20Boltzmann%20Model&rft.jtitle=Physical%20review%20letters&rft.au=Atif,%20Mohammad&rft.date=2017-12-15&rft.volume=119&rft.issue=24&rft.spage=240602&rft.epage=240602&rft.pages=240602-240602&rft.artnum=240602&rft.issn=0031-9007&rft.eissn=1079-7114&rft_id=info:doi/10.1103/PhysRevLett.119.240602&rft_dat=%3Cproquest_cross%3E1982840610%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1982840610&rft_id=info:pmid/29286719&rfr_iscdi=true