Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity
Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in E...
Gespeichert in:
Veröffentlicht in: | Plant and cell physiology 2004-12, Vol.45 (12), p.1787-1797 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1797 |
---|---|
container_issue | 12 |
container_start_page | 1787 |
container_title | Plant and cell physiology |
container_volume | 45 |
creator | Li, Y. (University of Georgia, Athens (USA)) Dhankher, O.P Carreira, L Lee, D Chen, A Schroeder, J.I Balish, R.S Meagher, R.B |
description | Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 MicroM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC sub(2), PC sub(3), PC sub(4)), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, Gamma-glutamyl cysteine (Gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed. |
doi_str_mv | 10.1093/pcp/pch202 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19820471</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>784825621</sourcerecordid><originalsourceid>FETCH-LOGICAL-c554t-eb1a2dc40387a48261f69dda3806ce195554af83977437fa132c52cf25c630243</originalsourceid><addsrcrecordid>eNpd0UGL1TAQAOAiivtcvXhXgwcPQnWSNE17XBb1uTxYdV0RLyEvndqsbdNN2uX135vSh8JCQobJxzDMJMlzCu8olPz9YIZ4GwbsQbKhmaRpCYI_TDYAnKUgC3qSPAnhBiDGHB4nJ1TkgstSbpLD5R16PAweQ7CuJ64mQzOPzjTY6tH2JMz92OiAJMZnXu9t5YZgA2lRV4GMjmDf6N5gRbQP2FsTcy36JUV0XxGjq85OHWnmARcQ7Gjv7Dg_TR7Vug347PieJtcfP3w_36a7y0-fz892qREiG1PcU80qkwEvpM4KltM6L6tK8wJyg7QUUem64KWUGZe1ppwZwUzNhMk5sIyfJm_WuoN3txOGUXU2GGxb3aObgqJlwSDOLMLX9-CNm3wfe1MMaL7MtYjo7YqMdyF4rNXgbaf9rCioZRkqLkOty4j45bHitO-w-k-P048gXYENIx7-_Wv_R-WSS6G2P38pvr36JndfL9SP6F-tvtZO6d_eBnV9FZvjAGVeMLH09-K-uPjCAEQ8jHL-F30pqNU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201614718</pqid></control><display><type>article</type><title>Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Li, Y. (University of Georgia, Athens (USA)) ; Dhankher, O.P ; Carreira, L ; Lee, D ; Chen, A ; Schroeder, J.I ; Balish, R.S ; Meagher, R.B</creator><creatorcontrib>Li, Y. (University of Georgia, Athens (USA)) ; Dhankher, O.P ; Carreira, L ; Lee, D ; Chen, A ; Schroeder, J.I ; Balish, R.S ; Meagher, R.B</creatorcontrib><description>Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 MicroM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC sub(2), PC sub(3), PC sub(4)), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, Gamma-glutamyl cysteine (Gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.</description><identifier>ISSN: 0032-0781</identifier><identifier>EISSN: 1471-9053</identifier><identifier>DOI: 10.1093/pcp/pch202</identifier><identifier>PMID: 15653797</identifier><language>eng</language><publisher>Japan: Oxford University Press</publisher><subject>aminoacyltransferases ; Aminoacyltransferases - genetics ; Aminoacyltransferases - metabolism ; ARABIDOPSIS ; Arabidopsis - drug effects ; Arabidopsis - enzymology ; Arabidopsis - genetics ; Arabidopsis phytochelatin synthase ; Arabidopsis thaliana ; ARSENIC ; Arsenic - toxicity ; AtPCS ; biosynthesis ; cadmium ; Cadmium - toxicity ; cassette containing Arabidopsis actin ACT2 promoter and terminator ; cysteine ; Dose-Response Relationship, Drug ; Drug Tolerance - physiology ; Escherichia coli ; gamma-glutamylcysteine ; gene expression regulation ; gene overexpression ; Glutathione ; glutathione gamma-glutamylcysteinyltransferase ; GSH ; heavy metals ; Keywords: Accumulation — Arsenite — γ-Glutamylcysteine — Mono-bromobimane — Transgene ; metal tolerance ; metalloids ; Metalloproteins - biosynthesis ; molecular sequence data ; nucleotide sequences ; PCs ; PCS: phytochelatin synthase ; physiological response ; phytochelatin synthase ; Phytochelatins ; plant proteins ; plant response ; Plants, Genetically Modified - drug effects ; Plants, Genetically Modified - enzymology ; Plants, Genetically Modified - genetics ; recombinant fusion proteins ; Sulfhydryl Compounds - metabolism ; TOLERANCE ; transgenic plants ; TRANSGENICS ; Up-Regulation - drug effects ; Up-Regulation - physiology ; γ-EC ; γ-glutamylcysteine</subject><ispartof>Plant and cell physiology, 2004-12, Vol.45 (12), p.1787-1797</ispartof><rights>Copyright Oxford University Press(England) Dec 15, 2004</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c554t-eb1a2dc40387a48261f69dda3806ce195554af83977437fa132c52cf25c630243</citedby><cites>FETCH-LOGICAL-c554t-eb1a2dc40387a48261f69dda3806ce195554af83977437fa132c52cf25c630243</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15653797$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Y. (University of Georgia, Athens (USA))</creatorcontrib><creatorcontrib>Dhankher, O.P</creatorcontrib><creatorcontrib>Carreira, L</creatorcontrib><creatorcontrib>Lee, D</creatorcontrib><creatorcontrib>Chen, A</creatorcontrib><creatorcontrib>Schroeder, J.I</creatorcontrib><creatorcontrib>Balish, R.S</creatorcontrib><creatorcontrib>Meagher, R.B</creatorcontrib><title>Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity</title><title>Plant and cell physiology</title><addtitle>Plant Cell Physiol</addtitle><description>Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 MicroM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC sub(2), PC sub(3), PC sub(4)), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, Gamma-glutamyl cysteine (Gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.</description><subject>aminoacyltransferases</subject><subject>Aminoacyltransferases - genetics</subject><subject>Aminoacyltransferases - metabolism</subject><subject>ARABIDOPSIS</subject><subject>Arabidopsis - drug effects</subject><subject>Arabidopsis - enzymology</subject><subject>Arabidopsis - genetics</subject><subject>Arabidopsis phytochelatin synthase</subject><subject>Arabidopsis thaliana</subject><subject>ARSENIC</subject><subject>Arsenic - toxicity</subject><subject>AtPCS</subject><subject>biosynthesis</subject><subject>cadmium</subject><subject>Cadmium - toxicity</subject><subject>cassette containing Arabidopsis actin ACT2 promoter and terminator</subject><subject>cysteine</subject><subject>Dose-Response Relationship, Drug</subject><subject>Drug Tolerance - physiology</subject><subject>Escherichia coli</subject><subject>gamma-glutamylcysteine</subject><subject>gene expression regulation</subject><subject>gene overexpression</subject><subject>Glutathione</subject><subject>glutathione gamma-glutamylcysteinyltransferase</subject><subject>GSH</subject><subject>heavy metals</subject><subject>Keywords: Accumulation — Arsenite — γ-Glutamylcysteine — Mono-bromobimane — Transgene</subject><subject>metal tolerance</subject><subject>metalloids</subject><subject>Metalloproteins - biosynthesis</subject><subject>molecular sequence data</subject><subject>nucleotide sequences</subject><subject>PCs</subject><subject>PCS: phytochelatin synthase</subject><subject>physiological response</subject><subject>phytochelatin synthase</subject><subject>Phytochelatins</subject><subject>plant proteins</subject><subject>plant response</subject><subject>Plants, Genetically Modified - drug effects</subject><subject>Plants, Genetically Modified - enzymology</subject><subject>Plants, Genetically Modified - genetics</subject><subject>recombinant fusion proteins</subject><subject>Sulfhydryl Compounds - metabolism</subject><subject>TOLERANCE</subject><subject>transgenic plants</subject><subject>TRANSGENICS</subject><subject>Up-Regulation - drug effects</subject><subject>Up-Regulation - physiology</subject><subject>γ-EC</subject><subject>γ-glutamylcysteine</subject><issn>0032-0781</issn><issn>1471-9053</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpd0UGL1TAQAOAiivtcvXhXgwcPQnWSNE17XBb1uTxYdV0RLyEvndqsbdNN2uX135vSh8JCQobJxzDMJMlzCu8olPz9YIZ4GwbsQbKhmaRpCYI_TDYAnKUgC3qSPAnhBiDGHB4nJ1TkgstSbpLD5R16PAweQ7CuJ64mQzOPzjTY6tH2JMz92OiAJMZnXu9t5YZgA2lRV4GMjmDf6N5gRbQP2FsTcy36JUV0XxGjq85OHWnmARcQ7Gjv7Dg_TR7Vug347PieJtcfP3w_36a7y0-fz892qREiG1PcU80qkwEvpM4KltM6L6tK8wJyg7QUUem64KWUGZe1ppwZwUzNhMk5sIyfJm_WuoN3txOGUXU2GGxb3aObgqJlwSDOLMLX9-CNm3wfe1MMaL7MtYjo7YqMdyF4rNXgbaf9rCioZRkqLkOty4j45bHitO-w-k-P048gXYENIx7-_Wv_R-WSS6G2P38pvr36JndfL9SP6F-tvtZO6d_eBnV9FZvjAGVeMLH09-K-uPjCAEQ8jHL-F30pqNU</recordid><startdate>20041215</startdate><enddate>20041215</enddate><creator>Li, Y. (University of Georgia, Athens (USA))</creator><creator>Dhankher, O.P</creator><creator>Carreira, L</creator><creator>Lee, D</creator><creator>Chen, A</creator><creator>Schroeder, J.I</creator><creator>Balish, R.S</creator><creator>Meagher, R.B</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7U7</scope></search><sort><creationdate>20041215</creationdate><title>Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity</title><author>Li, Y. (University of Georgia, Athens (USA)) ; Dhankher, O.P ; Carreira, L ; Lee, D ; Chen, A ; Schroeder, J.I ; Balish, R.S ; Meagher, R.B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c554t-eb1a2dc40387a48261f69dda3806ce195554af83977437fa132c52cf25c630243</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>aminoacyltransferases</topic><topic>Aminoacyltransferases - genetics</topic><topic>Aminoacyltransferases - metabolism</topic><topic>ARABIDOPSIS</topic><topic>Arabidopsis - drug effects</topic><topic>Arabidopsis - enzymology</topic><topic>Arabidopsis - genetics</topic><topic>Arabidopsis phytochelatin synthase</topic><topic>Arabidopsis thaliana</topic><topic>ARSENIC</topic><topic>Arsenic - toxicity</topic><topic>AtPCS</topic><topic>biosynthesis</topic><topic>cadmium</topic><topic>Cadmium - toxicity</topic><topic>cassette containing Arabidopsis actin ACT2 promoter and terminator</topic><topic>cysteine</topic><topic>Dose-Response Relationship, Drug</topic><topic>Drug Tolerance - physiology</topic><topic>Escherichia coli</topic><topic>gamma-glutamylcysteine</topic><topic>gene expression regulation</topic><topic>gene overexpression</topic><topic>Glutathione</topic><topic>glutathione gamma-glutamylcysteinyltransferase</topic><topic>GSH</topic><topic>heavy metals</topic><topic>Keywords: Accumulation — Arsenite — γ-Glutamylcysteine — Mono-bromobimane — Transgene</topic><topic>metal tolerance</topic><topic>metalloids</topic><topic>Metalloproteins - biosynthesis</topic><topic>molecular sequence data</topic><topic>nucleotide sequences</topic><topic>PCs</topic><topic>PCS: phytochelatin synthase</topic><topic>physiological response</topic><topic>phytochelatin synthase</topic><topic>Phytochelatins</topic><topic>plant proteins</topic><topic>plant response</topic><topic>Plants, Genetically Modified - drug effects</topic><topic>Plants, Genetically Modified - enzymology</topic><topic>Plants, Genetically Modified - genetics</topic><topic>recombinant fusion proteins</topic><topic>Sulfhydryl Compounds - metabolism</topic><topic>TOLERANCE</topic><topic>transgenic plants</topic><topic>TRANSGENICS</topic><topic>Up-Regulation - drug effects</topic><topic>Up-Regulation - physiology</topic><topic>γ-EC</topic><topic>γ-glutamylcysteine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Y. (University of Georgia, Athens (USA))</creatorcontrib><creatorcontrib>Dhankher, O.P</creatorcontrib><creatorcontrib>Carreira, L</creatorcontrib><creatorcontrib>Lee, D</creatorcontrib><creatorcontrib>Chen, A</creatorcontrib><creatorcontrib>Schroeder, J.I</creatorcontrib><creatorcontrib>Balish, R.S</creatorcontrib><creatorcontrib>Meagher, R.B</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Toxicology Abstracts</collection><jtitle>Plant and cell physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Y. (University of Georgia, Athens (USA))</au><au>Dhankher, O.P</au><au>Carreira, L</au><au>Lee, D</au><au>Chen, A</au><au>Schroeder, J.I</au><au>Balish, R.S</au><au>Meagher, R.B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity</atitle><jtitle>Plant and cell physiology</jtitle><addtitle>Plant Cell Physiol</addtitle><date>2004-12-15</date><risdate>2004</risdate><volume>45</volume><issue>12</issue><spage>1787</spage><epage>1797</epage><pages>1787-1797</pages><issn>0032-0781</issn><eissn>1471-9053</eissn><abstract>Phytochelatin synthase (PCS) catalyzes the final step in the biosynthesis of phytochelatins, which are a family of cysteine-rich thiol-reactive peptides believed to play important roles in processing many thiol-reactive toxicants. A modified Arabidopsis thaliana PCS sequence (AtPCS1) was active in Escherichia coli. When AtPCS1 was overexpressed in Arabidopsis from a strong constitutive Arabidopsis actin regulatory sequence (A2), the A2::AtPCS1 plants were highly resistant to arsenic, accumulating 20-100 times more biomass on 250 and 300 MicroM arsenate than wild type (WT); however, they were hypersensitive to Cd(II). After exposure to cadmium and arsenic, the overall accumulation of thiol-peptides increased to 10-fold higher levels in the A2::AtPCS1 plants compared with WT, as determined by fluorescent HPLC. Whereas cadmium induced greater increases in traditional PCs (PC sub(2), PC sub(3), PC sub(4)), arsenic exposure resulted in the expression of many unknown thiol products. Unexpectedly, after arsenate or cadmium exposure, levels of the dipeptide substrate for PC synthesis, Gamma-glutamyl cysteine (Gamma-EC), were also dramatically increased. Despite these high thiol-peptide concentrations, there were no significant increases in concentrations of arsenic and cadmium in above-ground tissues in the AtPCS1 plants relative to WT plants. The potential for AtPCS1 overexpression to be useful in strategies for phytoremediating arsenic and to compound the negative effects of cadmium are discussed.</abstract><cop>Japan</cop><pub>Oxford University Press</pub><pmid>15653797</pmid><doi>10.1093/pcp/pch202</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0781 |
ispartof | Plant and cell physiology, 2004-12, Vol.45 (12), p.1787-1797 |
issn | 0032-0781 1471-9053 |
language | eng |
recordid | cdi_proquest_miscellaneous_19820471 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals |
subjects | aminoacyltransferases Aminoacyltransferases - genetics Aminoacyltransferases - metabolism ARABIDOPSIS Arabidopsis - drug effects Arabidopsis - enzymology Arabidopsis - genetics Arabidopsis phytochelatin synthase Arabidopsis thaliana ARSENIC Arsenic - toxicity AtPCS biosynthesis cadmium Cadmium - toxicity cassette containing Arabidopsis actin ACT2 promoter and terminator cysteine Dose-Response Relationship, Drug Drug Tolerance - physiology Escherichia coli gamma-glutamylcysteine gene expression regulation gene overexpression Glutathione glutathione gamma-glutamylcysteinyltransferase GSH heavy metals Keywords: Accumulation — Arsenite — γ-Glutamylcysteine — Mono-bromobimane — Transgene metal tolerance metalloids Metalloproteins - biosynthesis molecular sequence data nucleotide sequences PCs PCS: phytochelatin synthase physiological response phytochelatin synthase Phytochelatins plant proteins plant response Plants, Genetically Modified - drug effects Plants, Genetically Modified - enzymology Plants, Genetically Modified - genetics recombinant fusion proteins Sulfhydryl Compounds - metabolism TOLERANCE transgenic plants TRANSGENICS Up-Regulation - drug effects Up-Regulation - physiology γ-EC γ-glutamylcysteine |
title | Overexpression of phytochelatin synthase in Arabidopsis leads to enhanced arsenic tolerance and cadmium hypersensitivity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T08%3A20%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Overexpression%20of%20phytochelatin%20synthase%20in%20Arabidopsis%20leads%20to%20enhanced%20arsenic%20tolerance%20and%20cadmium%20hypersensitivity&rft.jtitle=Plant%20and%20cell%20physiology&rft.au=Li,%20Y.%20(University%20of%20Georgia,%20Athens%20(USA))&rft.date=2004-12-15&rft.volume=45&rft.issue=12&rft.spage=1787&rft.epage=1797&rft.pages=1787-1797&rft.issn=0032-0781&rft.eissn=1471-9053&rft_id=info:doi/10.1093/pcp/pch202&rft_dat=%3Cproquest_cross%3E784825621%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201614718&rft_id=info:pmid/15653797&rfr_iscdi=true |