An Antiviral Role for the RNA Interference Machinery in Caenorhabditis elegans

RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by exogenous dsRNA. In plants an RNAi-like mechanism defends against viruses, but the hypothesis that animals possess a similar natural antiviral mechanism related to RNAi remains relatively untested. To test whether g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-12, Vol.102 (51), p.18420-18424
Hauptverfasser: Schott, Daniel H., David K. Cureton, Whelan, Sean P., Hunter, Craig P., Sharp, Phillip A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18424
container_issue 51
container_start_page 18420
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Schott, Daniel H.
David K. Cureton
Whelan, Sean P.
Hunter, Craig P.
Sharp, Phillip A.
description RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by exogenous dsRNA. In plants an RNAi-like mechanism defends against viruses, but the hypothesis that animals possess a similar natural antiviral mechanism related to RNAi remains relatively untested. To test whether genes needed for RNAi defend animal cells against virus infection, we infected wild-type and RNAi-defective cells of the nematode C. elegans with vesicular stomatitis virus engineered to encode a GFP fusion protein. We show that upon infection, cells lacking components of the RNAi apparatus produce more GFP and infective particles than wild-type cells. Furthermore, we show that mutant cells with enhanced RNAi produce less GFP. Our observation that multiple genes required for RNAi are also required for resistance to vesicular stomatitis virus suggests that the RNAi machinery functions in resistance to viruses in nature.
doi_str_mv 10.1073/pnas.0507123102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19819605</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>4152632</jstor_id><sourcerecordid>4152632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c529t-34b4f908020053ab8c41e613848e41dfe98c9492ed42b38987e29f0dc913b1ac3</originalsourceid><addsrcrecordid>eNqF0c9v0zAUB3ALgVgpnLkgZHFA4pDtPdtJ7AtSVfFj0hjSBGfLSV7WVKldbHdi_z2pWq3AZScf_HlfPfvL2GuEc4RaXmy9S-dQQo1CIognbIZgsKiUgadsBiDqQiuhztiLlNYAYEoNz9kZVlIaAzhj1wvPFz4Pd0N0I78JI_E-RJ5XxG-uF_zSZ4o9RfIt8W-uXQ2e4j0fPF868iGuXNMNeUicRrp1Pr1kz3o3Jnp1POfs5-dPP5Zfi6vvXy6Xi6uiLYXJhVSN6g1oEACldI1uFVKFUitNCruejG6NMoI6JRqpja5JmB661qBs0LVyzj4ecre7ZkNdSz5P-9ttHDYu3tvgBvvvjR9W9jbcWZRYGymngPfHgBh-7ShluxlSS-PoPIVdspU2qCv9OESj0VTTK-bs3X9wHXbRT79gBaCsVFnv0y4OqI0hpUj9w8oIdt-o3TdqT41OE2__funJHyucAD-C_eQpTtgSLU7tw0Q-PEJsvxvHTL_zZN8c7DrlEB-wwlJUUsg_4uK9Ug</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201364573</pqid></control><display><type>article</type><title>An Antiviral Role for the RNA Interference Machinery in Caenorhabditis elegans</title><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><source>JSTOR</source><creator>Schott, Daniel H. ; David K. Cureton ; Whelan, Sean P. ; Hunter, Craig P. ; Sharp, Phillip A.</creator><creatorcontrib>Schott, Daniel H. ; David K. Cureton ; Whelan, Sean P. ; Hunter, Craig P. ; Sharp, Phillip A.</creatorcontrib><description>RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by exogenous dsRNA. In plants an RNAi-like mechanism defends against viruses, but the hypothesis that animals possess a similar natural antiviral mechanism related to RNAi remains relatively untested. To test whether genes needed for RNAi defend animal cells against virus infection, we infected wild-type and RNAi-defective cells of the nematode C. elegans with vesicular stomatitis virus engineered to encode a GFP fusion protein. We show that upon infection, cells lacking components of the RNAi apparatus produce more GFP and infective particles than wild-type cells. Furthermore, we show that mutant cells with enhanced RNAi produce less GFP. Our observation that multiple genes required for RNAi are also required for resistance to vesicular stomatitis virus suggests that the RNAi machinery functions in resistance to viruses in nature.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0507123102</identifier><identifier>PMID: 16339901</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animal cells ; Animals ; Biological Sciences ; Biophysics ; Botany ; Caenorhabditis elegans ; Caenorhabditis elegans - genetics ; Caenorhabditis elegans - immunology ; Caenorhabditis elegans - virology ; Cell culture techniques ; Cells ; Cells, Cultured ; Double stranded RNA ; Embryonic cells ; Fluorescence ; Genes, Reporter - genetics ; Infections ; Kidney cells ; Mutation - genetics ; Nematoda ; Rhabdoviridae Infections - immunology ; Rhabdoviridae Infections - virology ; Ribonucleic acid ; RNA ; RNA Interference - physiology ; Vesicular stomatitis Indiana virus - immunology ; Vesicular stomatitis Indiana virus - physiology ; Vesicular stomatitis virus ; Viruses</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (51), p.18420-18424</ispartof><rights>Copyright 2005 National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Dec 20, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c529t-34b4f908020053ab8c41e613848e41dfe98c9492ed42b38987e29f0dc913b1ac3</citedby><cites>FETCH-LOGICAL-c529t-34b4f908020053ab8c41e613848e41dfe98c9492ed42b38987e29f0dc913b1ac3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/51.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/4152632$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/4152632$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27901,27902,53766,53768,57992,58225</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16339901$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Schott, Daniel H.</creatorcontrib><creatorcontrib>David K. Cureton</creatorcontrib><creatorcontrib>Whelan, Sean P.</creatorcontrib><creatorcontrib>Hunter, Craig P.</creatorcontrib><creatorcontrib>Sharp, Phillip A.</creatorcontrib><title>An Antiviral Role for the RNA Interference Machinery in Caenorhabditis elegans</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by exogenous dsRNA. In plants an RNAi-like mechanism defends against viruses, but the hypothesis that animals possess a similar natural antiviral mechanism related to RNAi remains relatively untested. To test whether genes needed for RNAi defend animal cells against virus infection, we infected wild-type and RNAi-defective cells of the nematode C. elegans with vesicular stomatitis virus engineered to encode a GFP fusion protein. We show that upon infection, cells lacking components of the RNAi apparatus produce more GFP and infective particles than wild-type cells. Furthermore, we show that mutant cells with enhanced RNAi produce less GFP. Our observation that multiple genes required for RNAi are also required for resistance to vesicular stomatitis virus suggests that the RNAi machinery functions in resistance to viruses in nature.</description><subject>Animal cells</subject><subject>Animals</subject><subject>Biological Sciences</subject><subject>Biophysics</subject><subject>Botany</subject><subject>Caenorhabditis elegans</subject><subject>Caenorhabditis elegans - genetics</subject><subject>Caenorhabditis elegans - immunology</subject><subject>Caenorhabditis elegans - virology</subject><subject>Cell culture techniques</subject><subject>Cells</subject><subject>Cells, Cultured</subject><subject>Double stranded RNA</subject><subject>Embryonic cells</subject><subject>Fluorescence</subject><subject>Genes, Reporter - genetics</subject><subject>Infections</subject><subject>Kidney cells</subject><subject>Mutation - genetics</subject><subject>Nematoda</subject><subject>Rhabdoviridae Infections - immunology</subject><subject>Rhabdoviridae Infections - virology</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA Interference - physiology</subject><subject>Vesicular stomatitis Indiana virus - immunology</subject><subject>Vesicular stomatitis Indiana virus - physiology</subject><subject>Vesicular stomatitis virus</subject><subject>Viruses</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c9v0zAUB3ALgVgpnLkgZHFA4pDtPdtJ7AtSVfFj0hjSBGfLSV7WVKldbHdi_z2pWq3AZScf_HlfPfvL2GuEc4RaXmy9S-dQQo1CIognbIZgsKiUgadsBiDqQiuhztiLlNYAYEoNz9kZVlIaAzhj1wvPFz4Pd0N0I78JI_E-RJ5XxG-uF_zSZ4o9RfIt8W-uXQ2e4j0fPF868iGuXNMNeUicRrp1Pr1kz3o3Jnp1POfs5-dPP5Zfi6vvXy6Xi6uiLYXJhVSN6g1oEACldI1uFVKFUitNCruejG6NMoI6JRqpja5JmB661qBs0LVyzj4ecre7ZkNdSz5P-9ttHDYu3tvgBvvvjR9W9jbcWZRYGymngPfHgBh-7ShluxlSS-PoPIVdspU2qCv9OESj0VTTK-bs3X9wHXbRT79gBaCsVFnv0y4OqI0hpUj9w8oIdt-o3TdqT41OE2__funJHyucAD-C_eQpTtgSLU7tw0Q-PEJsvxvHTL_zZN8c7DrlEB-wwlJUUsg_4uK9Ug</recordid><startdate>20051220</startdate><enddate>20051220</enddate><creator>Schott, Daniel H.</creator><creator>David K. Cureton</creator><creator>Whelan, Sean P.</creator><creator>Hunter, Craig P.</creator><creator>Sharp, Phillip A.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20051220</creationdate><title>An Antiviral Role for the RNA Interference Machinery in Caenorhabditis elegans</title><author>Schott, Daniel H. ; David K. Cureton ; Whelan, Sean P. ; Hunter, Craig P. ; Sharp, Phillip A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c529t-34b4f908020053ab8c41e613848e41dfe98c9492ed42b38987e29f0dc913b1ac3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animal cells</topic><topic>Animals</topic><topic>Biological Sciences</topic><topic>Biophysics</topic><topic>Botany</topic><topic>Caenorhabditis elegans</topic><topic>Caenorhabditis elegans - genetics</topic><topic>Caenorhabditis elegans - immunology</topic><topic>Caenorhabditis elegans - virology</topic><topic>Cell culture techniques</topic><topic>Cells</topic><topic>Cells, Cultured</topic><topic>Double stranded RNA</topic><topic>Embryonic cells</topic><topic>Fluorescence</topic><topic>Genes, Reporter - genetics</topic><topic>Infections</topic><topic>Kidney cells</topic><topic>Mutation - genetics</topic><topic>Nematoda</topic><topic>Rhabdoviridae Infections - immunology</topic><topic>Rhabdoviridae Infections - virology</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA Interference - physiology</topic><topic>Vesicular stomatitis Indiana virus - immunology</topic><topic>Vesicular stomatitis Indiana virus - physiology</topic><topic>Vesicular stomatitis virus</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schott, Daniel H.</creatorcontrib><creatorcontrib>David K. Cureton</creatorcontrib><creatorcontrib>Whelan, Sean P.</creatorcontrib><creatorcontrib>Hunter, Craig P.</creatorcontrib><creatorcontrib>Sharp, Phillip A.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schott, Daniel H.</au><au>David K. Cureton</au><au>Whelan, Sean P.</au><au>Hunter, Craig P.</au><au>Sharp, Phillip A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Antiviral Role for the RNA Interference Machinery in Caenorhabditis elegans</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-12-20</date><risdate>2005</risdate><volume>102</volume><issue>51</issue><spage>18420</spage><epage>18424</epage><pages>18420-18424</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>RNA interference (RNAi) is a sequence-specific gene-silencing mechanism triggered by exogenous dsRNA. In plants an RNAi-like mechanism defends against viruses, but the hypothesis that animals possess a similar natural antiviral mechanism related to RNAi remains relatively untested. To test whether genes needed for RNAi defend animal cells against virus infection, we infected wild-type and RNAi-defective cells of the nematode C. elegans with vesicular stomatitis virus engineered to encode a GFP fusion protein. We show that upon infection, cells lacking components of the RNAi apparatus produce more GFP and infective particles than wild-type cells. Furthermore, we show that mutant cells with enhanced RNAi produce less GFP. Our observation that multiple genes required for RNAi are also required for resistance to vesicular stomatitis virus suggests that the RNAi machinery functions in resistance to viruses in nature.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>16339901</pmid><doi>10.1073/pnas.0507123102</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-12, Vol.102 (51), p.18420-18424
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_19819605
source MEDLINE; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry; JSTOR
subjects Animal cells
Animals
Biological Sciences
Biophysics
Botany
Caenorhabditis elegans
Caenorhabditis elegans - genetics
Caenorhabditis elegans - immunology
Caenorhabditis elegans - virology
Cell culture techniques
Cells
Cells, Cultured
Double stranded RNA
Embryonic cells
Fluorescence
Genes, Reporter - genetics
Infections
Kidney cells
Mutation - genetics
Nematoda
Rhabdoviridae Infections - immunology
Rhabdoviridae Infections - virology
Ribonucleic acid
RNA
RNA Interference - physiology
Vesicular stomatitis Indiana virus - immunology
Vesicular stomatitis Indiana virus - physiology
Vesicular stomatitis virus
Viruses
title An Antiviral Role for the RNA Interference Machinery in Caenorhabditis elegans
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T13%3A49%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Antiviral%20Role%20for%20the%20RNA%20Interference%20Machinery%20in%20Caenorhabditis%20elegans&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Schott,%20Daniel%20H.&rft.date=2005-12-20&rft.volume=102&rft.issue=51&rft.spage=18420&rft.epage=18424&rft.pages=18420-18424&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0507123102&rft_dat=%3Cjstor_proqu%3E4152632%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201364573&rft_id=info:pmid/16339901&rft_jstor_id=4152632&rfr_iscdi=true