Reconstitution of Intramembrane Proteolysis in vitro Reveals That Pure Rhomboid Is Sufficient for Catalysis and Specificity

Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapit...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Proceedings of the National Academy of Sciences - PNAS 2005-02, Vol.102 (6), p.1883-1888
Hauptverfasser: Urban, Sinisa, Wolfe, Michael S., Südhof, Thomas C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1888
container_issue 6
container_start_page 1883
container_title Proceedings of the National Academy of Sciences - PNAS
container_volume 102
creator Urban, Sinisa
Wolfe, Michael S.
Südhof, Thomas C.
description Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapitulating activity in vitro. We have reconstituted intramembrane proteolysis with a pure recombinant substrate and rhomboid proteins in both detergent micelles and artificial membrane environments. Rhomboid proteins from diverse organisms including two model bacteria, a pathogen, an extremophile, and an animal were robustly active in pure form, proving that rhomboids are a new class of enzymes and do not require cofactors to catalyze intramembrane proteolysis. Rhomboid proteins directly recognized their substrates in vitro by the top of the substrate transmembrane domain, displaying specificity apparently reciprocal to that of γ-secretase, the only other activity known to cleave type-I transmembrane domains. Rhomboid proteases represent a different evolutionary path to a serine protease mechanism and exhibited an inhibitor profile unlike other serine proteases. Intriguingly, activity was dramatically modulated by different membrane phospholipid environments, suggesting a mechanism for regulating these proteases. This analysis promises to help reveal the biochemical mechanisms and biological roles of this most widely conserved membrane protein family.
doi_str_mv 10.1073/pnas.0408306102
format Article
fullrecord <record><control><sourceid>jstor_proqu</sourceid><recordid>TN_cdi_proquest_miscellaneous_19819291</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>3374531</jstor_id><sourcerecordid>3374531</sourcerecordid><originalsourceid>FETCH-LOGICAL-c524t-804cad36920e4f3efa4e8f082fd438082097691201f379798aed842a4c20356c3</originalsourceid><addsrcrecordid>eNqFkc1vEzEQxS0EomnhzAUhi0M5bTv-2F37wAFFfESqRJWWs-Xs2sTR7jrY3oiIfx6vEjUFIXGaw_ze07x5CL0icEWgZtfbQccr4CAYVAToEzQjIElRcQlP0QyA1oXglJ-h8xg3ACBLAc_RGSkrwaGGGfq1NI0fYnJpTM4P2Fu8GFLQvelXQQ8G3wafjO_20UXsBrxzKXi8NDuju4jv1zrh2zEYvFz7fuVdixcR343WusaZIWHrA57rpA96PbT4bmsaN63T_gV6ZrOLeXmcF-jbp4_38y_FzdfPi_mHm6IpKU-FAN7ollWSguGWGau5ERYEtS1nIk-QdSUJBWJZLWsptGlzaM0bCqysGnaB3h98t-OqN21jpoCd2gbX67BXXjv152Zwa_Xd71TJRcmrrL886oP_MZqYVO9iY7ou_8ePUVU1J5KV9X9BIgWRVJIMvv0L3PgxDPkJKsdgQLmkGbo-QE3wMQZjHy4moKb21dS-OrWfFW8eBz3xx7oz8O4ITMqTHVWVIkIwZceuS-ZnemT1bzIDrw_AJiYfHgjGal4ywn4DOZHOCg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>201302492</pqid></control><display><type>article</type><title>Reconstitution of Intramembrane Proteolysis in vitro Reveals That Pure Rhomboid Is Sufficient for Catalysis and Specificity</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>Free Full-Text Journals in Chemistry</source><creator>Urban, Sinisa ; Wolfe, Michael S. ; Südhof, Thomas C.</creator><creatorcontrib>Urban, Sinisa ; Wolfe, Michael S. ; Südhof, Thomas C.</creatorcontrib><description>Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapitulating activity in vitro. We have reconstituted intramembrane proteolysis with a pure recombinant substrate and rhomboid proteins in both detergent micelles and artificial membrane environments. Rhomboid proteins from diverse organisms including two model bacteria, a pathogen, an extremophile, and an animal were robustly active in pure form, proving that rhomboids are a new class of enzymes and do not require cofactors to catalyze intramembrane proteolysis. Rhomboid proteins directly recognized their substrates in vitro by the top of the substrate transmembrane domain, displaying specificity apparently reciprocal to that of γ-secretase, the only other activity known to cleave type-I transmembrane domains. Rhomboid proteases represent a different evolutionary path to a serine protease mechanism and exhibited an inhibitor profile unlike other serine proteases. Intriguingly, activity was dramatically modulated by different membrane phospholipid environments, suggesting a mechanism for regulating these proteases. This analysis promises to help reveal the biochemical mechanisms and biological roles of this most widely conserved membrane protein family.</description><identifier>ISSN: 0027-8424</identifier><identifier>EISSN: 1091-6490</identifier><identifier>DOI: 10.1073/pnas.0408306102</identifier><identifier>PMID: 15684070</identifier><language>eng</language><publisher>United States: National Academy of Sciences</publisher><subject>Animals ; Bacteria ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Biochemistry ; Biological Sciences ; Catalysis ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Detergents ; Detergents - chemistry ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Enzymes ; Humans ; Lipids ; Membrane lipids ; Membrane Lipids - metabolism ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Membranes ; Micelles ; P branes ; Peptide Hydrolases - chemistry ; Peptide Hydrolases - metabolism ; Phospholipids ; Physiological regulation ; Protease Inhibitors - metabolism ; Proteins ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Signal transduction ; Signal Transduction - physiology ; Substrate Specificity</subject><ispartof>Proceedings of the National Academy of Sciences - PNAS, 2005-02, Vol.102 (6), p.1883-1888</ispartof><rights>Copyright 1993/2005 The National Academy of Sciences of the United States of America</rights><rights>Copyright National Academy of Sciences Feb 8, 2005</rights><rights>Copyright © 2005, The National Academy of Sciences 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c524t-804cad36920e4f3efa4e8f082fd438082097691201f379798aed842a4c20356c3</citedby><cites>FETCH-LOGICAL-c524t-804cad36920e4f3efa4e8f082fd438082097691201f379798aed842a4c20356c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://www.pnas.org/content/102/6.cover.gif</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/3374531$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/3374531$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,723,776,780,799,881,27903,27904,53770,53772,57996,58229</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15684070$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Urban, Sinisa</creatorcontrib><creatorcontrib>Wolfe, Michael S.</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><title>Reconstitution of Intramembrane Proteolysis in vitro Reveals That Pure Rhomboid Is Sufficient for Catalysis and Specificity</title><title>Proceedings of the National Academy of Sciences - PNAS</title><addtitle>Proc Natl Acad Sci U S A</addtitle><description>Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapitulating activity in vitro. We have reconstituted intramembrane proteolysis with a pure recombinant substrate and rhomboid proteins in both detergent micelles and artificial membrane environments. Rhomboid proteins from diverse organisms including two model bacteria, a pathogen, an extremophile, and an animal were robustly active in pure form, proving that rhomboids are a new class of enzymes and do not require cofactors to catalyze intramembrane proteolysis. Rhomboid proteins directly recognized their substrates in vitro by the top of the substrate transmembrane domain, displaying specificity apparently reciprocal to that of γ-secretase, the only other activity known to cleave type-I transmembrane domains. Rhomboid proteases represent a different evolutionary path to a serine protease mechanism and exhibited an inhibitor profile unlike other serine proteases. Intriguingly, activity was dramatically modulated by different membrane phospholipid environments, suggesting a mechanism for regulating these proteases. This analysis promises to help reveal the biochemical mechanisms and biological roles of this most widely conserved membrane protein family.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Biochemistry</subject><subject>Biological Sciences</subject><subject>Catalysis</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Detergents</subject><subject>Detergents - chemistry</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Enzymes</subject><subject>Humans</subject><subject>Lipids</subject><subject>Membrane lipids</subject><subject>Membrane Lipids - metabolism</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Membranes</subject><subject>Micelles</subject><subject>P branes</subject><subject>Peptide Hydrolases - chemistry</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Phospholipids</subject><subject>Physiological regulation</subject><subject>Protease Inhibitors - metabolism</subject><subject>Proteins</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Signal transduction</subject><subject>Signal Transduction - physiology</subject><subject>Substrate Specificity</subject><issn>0027-8424</issn><issn>1091-6490</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1vEzEQxS0EomnhzAUhi0M5bTv-2F37wAFFfESqRJWWs-Xs2sTR7jrY3oiIfx6vEjUFIXGaw_ze07x5CL0icEWgZtfbQccr4CAYVAToEzQjIElRcQlP0QyA1oXglJ-h8xg3ACBLAc_RGSkrwaGGGfq1NI0fYnJpTM4P2Fu8GFLQvelXQQ8G3wafjO_20UXsBrxzKXi8NDuju4jv1zrh2zEYvFz7fuVdixcR343WusaZIWHrA57rpA96PbT4bmsaN63T_gV6ZrOLeXmcF-jbp4_38y_FzdfPi_mHm6IpKU-FAN7ollWSguGWGau5ERYEtS1nIk-QdSUJBWJZLWsptGlzaM0bCqysGnaB3h98t-OqN21jpoCd2gbX67BXXjv152Zwa_Xd71TJRcmrrL886oP_MZqYVO9iY7ou_8ePUVU1J5KV9X9BIgWRVJIMvv0L3PgxDPkJKsdgQLmkGbo-QE3wMQZjHy4moKb21dS-OrWfFW8eBz3xx7oz8O4ITMqTHVWVIkIwZceuS-ZnemT1bzIDrw_AJiYfHgjGal4ywn4DOZHOCg</recordid><startdate>20050208</startdate><enddate>20050208</enddate><creator>Urban, Sinisa</creator><creator>Wolfe, Michael S.</creator><creator>Südhof, Thomas C.</creator><general>National Academy of Sciences</general><general>National Acad Sciences</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20050208</creationdate><title>Reconstitution of Intramembrane Proteolysis in vitro Reveals That Pure Rhomboid Is Sufficient for Catalysis and Specificity</title><author>Urban, Sinisa ; Wolfe, Michael S. ; Südhof, Thomas C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c524t-804cad36920e4f3efa4e8f082fd438082097691201f379798aed842a4c20356c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Biochemistry</topic><topic>Biological Sciences</topic><topic>Catalysis</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Detergents</topic><topic>Detergents - chemistry</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Enzymes</topic><topic>Humans</topic><topic>Lipids</topic><topic>Membrane lipids</topic><topic>Membrane Lipids - metabolism</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Membranes</topic><topic>Micelles</topic><topic>P branes</topic><topic>Peptide Hydrolases - chemistry</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Phospholipids</topic><topic>Physiological regulation</topic><topic>Protease Inhibitors - metabolism</topic><topic>Proteins</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Signal transduction</topic><topic>Signal Transduction - physiology</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Urban, Sinisa</creatorcontrib><creatorcontrib>Wolfe, Michael S.</creatorcontrib><creatorcontrib>Südhof, Thomas C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Urban, Sinisa</au><au>Wolfe, Michael S.</au><au>Südhof, Thomas C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reconstitution of Intramembrane Proteolysis in vitro Reveals That Pure Rhomboid Is Sufficient for Catalysis and Specificity</atitle><jtitle>Proceedings of the National Academy of Sciences - PNAS</jtitle><addtitle>Proc Natl Acad Sci U S A</addtitle><date>2005-02-08</date><risdate>2005</risdate><volume>102</volume><issue>6</issue><spage>1883</spage><epage>1888</epage><pages>1883-1888</pages><issn>0027-8424</issn><eissn>1091-6490</eissn><abstract>Intramembrane proteolysis is a new paradigm in biology that controls signaling events throughout evolution. Hydrolysis of peptide bonds is thought to occur within the normally hydrophobic membrane environment, but insights into this unusual activity have been lacking because of difficulty in recapitulating activity in vitro. We have reconstituted intramembrane proteolysis with a pure recombinant substrate and rhomboid proteins in both detergent micelles and artificial membrane environments. Rhomboid proteins from diverse organisms including two model bacteria, a pathogen, an extremophile, and an animal were robustly active in pure form, proving that rhomboids are a new class of enzymes and do not require cofactors to catalyze intramembrane proteolysis. Rhomboid proteins directly recognized their substrates in vitro by the top of the substrate transmembrane domain, displaying specificity apparently reciprocal to that of γ-secretase, the only other activity known to cleave type-I transmembrane domains. Rhomboid proteases represent a different evolutionary path to a serine protease mechanism and exhibited an inhibitor profile unlike other serine proteases. Intriguingly, activity was dramatically modulated by different membrane phospholipid environments, suggesting a mechanism for regulating these proteases. This analysis promises to help reveal the biochemical mechanisms and biological roles of this most widely conserved membrane protein family.</abstract><cop>United States</cop><pub>National Academy of Sciences</pub><pmid>15684070</pmid><doi>10.1073/pnas.0408306102</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0027-8424
ispartof Proceedings of the National Academy of Sciences - PNAS, 2005-02, Vol.102 (6), p.1883-1888
issn 0027-8424
1091-6490
language eng
recordid cdi_proquest_miscellaneous_19819291
source MEDLINE; Jstor Complete Legacy; PubMed Central; Alma/SFX Local Collection; Free Full-Text Journals in Chemistry
subjects Animals
Bacteria
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Biochemistry
Biological Sciences
Catalysis
Cell Membrane - chemistry
Cell Membrane - metabolism
Detergents
Detergents - chemistry
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Enzymes
Humans
Lipids
Membrane lipids
Membrane Lipids - metabolism
Membrane Proteins - genetics
Membrane Proteins - metabolism
Membranes
Micelles
P branes
Peptide Hydrolases - chemistry
Peptide Hydrolases - metabolism
Phospholipids
Physiological regulation
Protease Inhibitors - metabolism
Proteins
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Signal transduction
Signal Transduction - physiology
Substrate Specificity
title Reconstitution of Intramembrane Proteolysis in vitro Reveals That Pure Rhomboid Is Sufficient for Catalysis and Specificity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T15%3A03%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reconstitution%20of%20Intramembrane%20Proteolysis%20in%20vitro%20Reveals%20That%20Pure%20Rhomboid%20Is%20Sufficient%20for%20Catalysis%20and%20Specificity&rft.jtitle=Proceedings%20of%20the%20National%20Academy%20of%20Sciences%20-%20PNAS&rft.au=Urban,%20Sinisa&rft.date=2005-02-08&rft.volume=102&rft.issue=6&rft.spage=1883&rft.epage=1888&rft.pages=1883-1888&rft.issn=0027-8424&rft.eissn=1091-6490&rft_id=info:doi/10.1073/pnas.0408306102&rft_dat=%3Cjstor_proqu%3E3374531%3C/jstor_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=201302492&rft_id=info:pmid/15684070&rft_jstor_id=3374531&rfr_iscdi=true