Connection between Lithium Coordination and Lithium Diffusion in [Pyr12O1][FTFSI] Ionic Liquid Electrolytes

The use of highly concentrated ionic liquid‐based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+‐dilute systems in Li‐metal and Li‐ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemSusChem 2018-06, Vol.11 (12), p.1981-1989
Hauptverfasser: Giffin, Guinevere A., Moretti, Arianna, Jeong, Sangsik, Pilar, Kartik, Brinkkötter, Marc, Greenbaum, Steven G., Schönhoff, Monika, Passerini, Stefano
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1989
container_issue 12
container_start_page 1981
container_title ChemSusChem
container_volume 11
creator Giffin, Guinevere A.
Moretti, Arianna
Jeong, Sangsik
Pilar, Kartik
Brinkkötter, Marc
Greenbaum, Steven G.
Schönhoff, Monika
Passerini, Stefano
description The use of highly concentrated ionic liquid‐based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+‐dilute systems in Li‐metal and Li‐ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li+ transport mechanisms. Below 30 mol %, the Li+‐containing species are primarily smaller complexes (one Li+ cation) and the Li+ ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li+‐containing species are a mix of small and large complexes (one and more than one Li+ cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li+ solvation shell. The good rate performance is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport (as opposed to Li+‐complex transport) and increase the Li+ availability at the electrode. Ain′t no complex that moved: The good rate performance of Li‐ion cells with high concentration ionic liquid electrolytes is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport through structural diffusion and increase the Li+ availability at the electrode.
doi_str_mv 10.1002/cssc.201702288
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1981744105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2057903640</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4768-e6d3eb1f80bde68460bd16c9ee7c733e34254a5c407fc41b8796c2dc9dda15f93</originalsourceid><addsrcrecordid>eNqFkc9LIzEUx4OsaLd69bgM7GUvrUkmkx_HZbRroaBQBUEkzCRv2HSnSU1mkP73O7VuF7x4eo-8Tz483hehC4KnBGN6aVIyU4qJwJRKeYRGRHI2KTh7_HLoc3KKvqa0wphjxfkJOqWKSioFG6E_ZfAeTOeCz2roXgF8tnDdb9evszKEaJ2v3oaVt4fBlWuaPu1enc-e7raR0Fvy_DS7ny3nz9k8eGcG9qV3NrtuB3kM7baDdIaOm6pNcP5ex-hhdn1f3kwWt7_m5c_FxDDB5QS4zaEmjcS1BS4ZHyrhRgEII_IcckYLVhWGYdEYRmopFDfUGmVtRYpG5WP0Y-_dxPDSQ-r02iUDbVt5CH3SREkiGCO4GNDvH9BV6KMfttMUF0LhnDM8UNM9ZWJIKUKjN9Gtq7jVBOtdDHoXgz7EMHz49q7t6zXYA_7v7gOg9sCra2H7iU6Xy2X5X_4XmkiUcg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2057903640</pqid></control><display><type>article</type><title>Connection between Lithium Coordination and Lithium Diffusion in [Pyr12O1][FTFSI] Ionic Liquid Electrolytes</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Giffin, Guinevere A. ; Moretti, Arianna ; Jeong, Sangsik ; Pilar, Kartik ; Brinkkötter, Marc ; Greenbaum, Steven G. ; Schönhoff, Monika ; Passerini, Stefano</creator><creatorcontrib>Giffin, Guinevere A. ; Moretti, Arianna ; Jeong, Sangsik ; Pilar, Kartik ; Brinkkötter, Marc ; Greenbaum, Steven G. ; Schönhoff, Monika ; Passerini, Stefano</creatorcontrib><description>The use of highly concentrated ionic liquid‐based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+‐dilute systems in Li‐metal and Li‐ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li+ transport mechanisms. Below 30 mol %, the Li+‐containing species are primarily smaller complexes (one Li+ cation) and the Li+ ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li+‐containing species are a mix of small and large complexes (one and more than one Li+ cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li+ solvation shell. The good rate performance is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport (as opposed to Li+‐complex transport) and increase the Li+ availability at the electrode. Ain′t no complex that moved: The good rate performance of Li‐ion cells with high concentration ionic liquid electrolytes is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport through structural diffusion and increase the Li+ availability at the electrode.</description><identifier>ISSN: 1864-5631</identifier><identifier>EISSN: 1864-564X</identifier><identifier>DOI: 10.1002/cssc.201702288</identifier><identifier>PMID: 29282874</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Anion exchanging ; batteries ; Cations ; density functional calculations ; Dependence ; Dilution ; Electrolytes ; Electrolytic cells ; Ion transport ; Ionic liquids ; Ions ; lithium diffusion ; Lithium ions ; Molecular chains ; Solvation</subject><ispartof>ChemSusChem, 2018-06, Vol.11 (12), p.1981-1989</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4768-e6d3eb1f80bde68460bd16c9ee7c733e34254a5c407fc41b8796c2dc9dda15f93</citedby><cites>FETCH-LOGICAL-c4768-e6d3eb1f80bde68460bd16c9ee7c733e34254a5c407fc41b8796c2dc9dda15f93</cites><orcidid>0000-0002-6606-5304</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcssc.201702288$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcssc.201702288$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29282874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Giffin, Guinevere A.</creatorcontrib><creatorcontrib>Moretti, Arianna</creatorcontrib><creatorcontrib>Jeong, Sangsik</creatorcontrib><creatorcontrib>Pilar, Kartik</creatorcontrib><creatorcontrib>Brinkkötter, Marc</creatorcontrib><creatorcontrib>Greenbaum, Steven G.</creatorcontrib><creatorcontrib>Schönhoff, Monika</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><title>Connection between Lithium Coordination and Lithium Diffusion in [Pyr12O1][FTFSI] Ionic Liquid Electrolytes</title><title>ChemSusChem</title><addtitle>ChemSusChem</addtitle><description>The use of highly concentrated ionic liquid‐based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+‐dilute systems in Li‐metal and Li‐ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li+ transport mechanisms. Below 30 mol %, the Li+‐containing species are primarily smaller complexes (one Li+ cation) and the Li+ ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li+‐containing species are a mix of small and large complexes (one and more than one Li+ cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li+ solvation shell. The good rate performance is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport (as opposed to Li+‐complex transport) and increase the Li+ availability at the electrode. Ain′t no complex that moved: The good rate performance of Li‐ion cells with high concentration ionic liquid electrolytes is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport through structural diffusion and increase the Li+ availability at the electrode.</description><subject>Anion exchanging</subject><subject>batteries</subject><subject>Cations</subject><subject>density functional calculations</subject><subject>Dependence</subject><subject>Dilution</subject><subject>Electrolytes</subject><subject>Electrolytic cells</subject><subject>Ion transport</subject><subject>Ionic liquids</subject><subject>Ions</subject><subject>lithium diffusion</subject><subject>Lithium ions</subject><subject>Molecular chains</subject><subject>Solvation</subject><issn>1864-5631</issn><issn>1864-564X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkc9LIzEUx4OsaLd69bgM7GUvrUkmkx_HZbRroaBQBUEkzCRv2HSnSU1mkP73O7VuF7x4eo-8Tz483hehC4KnBGN6aVIyU4qJwJRKeYRGRHI2KTh7_HLoc3KKvqa0wphjxfkJOqWKSioFG6E_ZfAeTOeCz2roXgF8tnDdb9evszKEaJ2v3oaVt4fBlWuaPu1enc-e7raR0Fvy_DS7ny3nz9k8eGcG9qV3NrtuB3kM7baDdIaOm6pNcP5ex-hhdn1f3kwWt7_m5c_FxDDB5QS4zaEmjcS1BS4ZHyrhRgEII_IcckYLVhWGYdEYRmopFDfUGmVtRYpG5WP0Y-_dxPDSQ-r02iUDbVt5CH3SREkiGCO4GNDvH9BV6KMfttMUF0LhnDM8UNM9ZWJIKUKjN9Gtq7jVBOtdDHoXgz7EMHz49q7t6zXYA_7v7gOg9sCra2H7iU6Xy2X5X_4XmkiUcg</recordid><startdate>20180622</startdate><enddate>20180622</enddate><creator>Giffin, Guinevere A.</creator><creator>Moretti, Arianna</creator><creator>Jeong, Sangsik</creator><creator>Pilar, Kartik</creator><creator>Brinkkötter, Marc</creator><creator>Greenbaum, Steven G.</creator><creator>Schönhoff, Monika</creator><creator>Passerini, Stefano</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>K9.</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></search><sort><creationdate>20180622</creationdate><title>Connection between Lithium Coordination and Lithium Diffusion in [Pyr12O1][FTFSI] Ionic Liquid Electrolytes</title><author>Giffin, Guinevere A. ; Moretti, Arianna ; Jeong, Sangsik ; Pilar, Kartik ; Brinkkötter, Marc ; Greenbaum, Steven G. ; Schönhoff, Monika ; Passerini, Stefano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4768-e6d3eb1f80bde68460bd16c9ee7c733e34254a5c407fc41b8796c2dc9dda15f93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anion exchanging</topic><topic>batteries</topic><topic>Cations</topic><topic>density functional calculations</topic><topic>Dependence</topic><topic>Dilution</topic><topic>Electrolytes</topic><topic>Electrolytic cells</topic><topic>Ion transport</topic><topic>Ionic liquids</topic><topic>Ions</topic><topic>lithium diffusion</topic><topic>Lithium ions</topic><topic>Molecular chains</topic><topic>Solvation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Giffin, Guinevere A.</creatorcontrib><creatorcontrib>Moretti, Arianna</creatorcontrib><creatorcontrib>Jeong, Sangsik</creatorcontrib><creatorcontrib>Pilar, Kartik</creatorcontrib><creatorcontrib>Brinkkötter, Marc</creatorcontrib><creatorcontrib>Greenbaum, Steven G.</creatorcontrib><creatorcontrib>Schönhoff, Monika</creatorcontrib><creatorcontrib>Passerini, Stefano</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>ChemSusChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Giffin, Guinevere A.</au><au>Moretti, Arianna</au><au>Jeong, Sangsik</au><au>Pilar, Kartik</au><au>Brinkkötter, Marc</au><au>Greenbaum, Steven G.</au><au>Schönhoff, Monika</au><au>Passerini, Stefano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Connection between Lithium Coordination and Lithium Diffusion in [Pyr12O1][FTFSI] Ionic Liquid Electrolytes</atitle><jtitle>ChemSusChem</jtitle><addtitle>ChemSusChem</addtitle><date>2018-06-22</date><risdate>2018</risdate><volume>11</volume><issue>12</issue><spage>1981</spage><epage>1989</epage><pages>1981-1989</pages><issn>1864-5631</issn><eissn>1864-564X</eissn><abstract>The use of highly concentrated ionic liquid‐based electrolytes results in improved rate capability and capacity retention at 20 °C compared to Li+‐dilute systems in Li‐metal and Li‐ion cells. This work explores the connection between the bulk electrolyte properties and the molecular organization to provide insight into the concentration dependence of the Li+ transport mechanisms. Below 30 mol %, the Li+‐containing species are primarily smaller complexes (one Li+ cation) and the Li+ ion transport is mostly derived from the vehicular transport. Above 30 mol %, where the viscosity is substantially higher and the conductivity lower, the Li+‐containing species are a mix of small and large complexes (one and more than one Li+ cation, respectively). The overall conduction mechanism likely changes to favor structural diffusion through the exchange of anions in the first Li+ solvation shell. The good rate performance is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport (as opposed to Li+‐complex transport) and increase the Li+ availability at the electrode. Ain′t no complex that moved: The good rate performance of Li‐ion cells with high concentration ionic liquid electrolytes is likely directly influenced by the presence of larger Li+ complexes, which promote Li+‐ion transport through structural diffusion and increase the Li+ availability at the electrode.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29282874</pmid><doi>10.1002/cssc.201702288</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-6606-5304</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1864-5631
ispartof ChemSusChem, 2018-06, Vol.11 (12), p.1981-1989
issn 1864-5631
1864-564X
language eng
recordid cdi_proquest_miscellaneous_1981744105
source Wiley Online Library Journals Frontfile Complete
subjects Anion exchanging
batteries
Cations
density functional calculations
Dependence
Dilution
Electrolytes
Electrolytic cells
Ion transport
Ionic liquids
Ions
lithium diffusion
Lithium ions
Molecular chains
Solvation
title Connection between Lithium Coordination and Lithium Diffusion in [Pyr12O1][FTFSI] Ionic Liquid Electrolytes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T19%3A31%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Connection%20between%20Lithium%20Coordination%20and%20Lithium%20Diffusion%20in%20%5BPyr12O1%5D%5BFTFSI%5D%20Ionic%20Liquid%20Electrolytes&rft.jtitle=ChemSusChem&rft.au=Giffin,%20Guinevere%20A.&rft.date=2018-06-22&rft.volume=11&rft.issue=12&rft.spage=1981&rft.epage=1989&rft.pages=1981-1989&rft.issn=1864-5631&rft.eissn=1864-564X&rft_id=info:doi/10.1002/cssc.201702288&rft_dat=%3Cproquest_cross%3E2057903640%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2057903640&rft_id=info:pmid/29282874&rfr_iscdi=true