Structural Effects on the Spin Dynamics of Potential Molecular Qubits

Control of spin–lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Inorganic chemistry 2018-01, Vol.57 (2), p.731-740
Hauptverfasser: Atzori, Matteo, Benci, Stefano, Morra, Elena, Tesi, Lorenzo, Chiesa, Mario, Torre, Renato, Sorace, Lorenzo, Sessoli, Roberta
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 740
container_issue 2
container_start_page 731
container_title Inorganic chemistry
container_volume 57
creator Atzori, Matteo
Benci, Stefano
Morra, Elena
Tesi, Lorenzo
Chiesa, Mario
Torre, Renato
Sorace, Lorenzo
Sessoli, Roberta
description Control of spin–lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium­(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin–lattice relaxation time as a function of the magnetic field, for S = 1/2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0–6.0 μs in the 4–100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.
doi_str_mv 10.1021/acs.inorgchem.7b02616
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1981054713</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1981054713</sourcerecordid><originalsourceid>FETCH-LOGICAL-a464t-eef0baffb38252f2237be37494a66db7ae1819bd43680af471ee306f3b607b1a3</originalsourceid><addsrcrecordid>eNqFkE1PwzAMhiMEYmPwE0A9ctlwkjZtj2iMD2kI0EDiViWZwzq1zUjSw_49mTa4crJlPa8tP4RcUphQYPRGaj-pO-u-9ArbSa6ACSqOyJBmDMYZhc9jMgSIPRWiHJAz79cAUPJUnJIBK1kBghVDMlsE1-vQO9kkM2NQB5_YLgkrTBabukvutp1sax2HJnm1AbtQR_LZNqj7RrrkrVd18OfkxMjG48WhjsjH_ex9-jievzw8TW_nY5mKNIwRDShpjOIFy5hhjOcKeZ6WqRRiqXKJtKClWqZcFCBNmlNEDsJwJSBXVPIRud7v3Tj73aMPVVt7jU0jO7S9r2hZUMhijkc026PaWe8dmmrj6la6bUWh2hmsosHqz2B1MBhzV4cTvWpx-Zf6VRYBugd2-bXtXRc__mfpD0HegUU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981054713</pqid></control><display><type>article</type><title>Structural Effects on the Spin Dynamics of Potential Molecular Qubits</title><source>ACS Publications</source><creator>Atzori, Matteo ; Benci, Stefano ; Morra, Elena ; Tesi, Lorenzo ; Chiesa, Mario ; Torre, Renato ; Sorace, Lorenzo ; Sessoli, Roberta</creator><creatorcontrib>Atzori, Matteo ; Benci, Stefano ; Morra, Elena ; Tesi, Lorenzo ; Chiesa, Mario ; Torre, Renato ; Sorace, Lorenzo ; Sessoli, Roberta</creatorcontrib><description>Control of spin–lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium­(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin–lattice relaxation time as a function of the magnetic field, for S = 1/2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0–6.0 μs in the 4–100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.</description><identifier>ISSN: 0020-1669</identifier><identifier>EISSN: 1520-510X</identifier><identifier>DOI: 10.1021/acs.inorgchem.7b02616</identifier><identifier>PMID: 29280628</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Inorganic chemistry, 2018-01, Vol.57 (2), p.731-740</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a464t-eef0baffb38252f2237be37494a66db7ae1819bd43680af471ee306f3b607b1a3</citedby><cites>FETCH-LOGICAL-a464t-eef0baffb38252f2237be37494a66db7ae1819bd43680af471ee306f3b607b1a3</cites><orcidid>0000-0003-3783-2700 ; 0000-0003-1357-6159 ; 0000-0003-4785-1331 ; 0000-0001-8128-8031 ; 0000-0003-4001-8363 ; 0000-0001-6492-1616</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.inorgchem.7b02616$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.inorgchem.7b02616$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,776,780,2752,27053,27901,27902,56713,56763</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29280628$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Atzori, Matteo</creatorcontrib><creatorcontrib>Benci, Stefano</creatorcontrib><creatorcontrib>Morra, Elena</creatorcontrib><creatorcontrib>Tesi, Lorenzo</creatorcontrib><creatorcontrib>Chiesa, Mario</creatorcontrib><creatorcontrib>Torre, Renato</creatorcontrib><creatorcontrib>Sorace, Lorenzo</creatorcontrib><creatorcontrib>Sessoli, Roberta</creatorcontrib><title>Structural Effects on the Spin Dynamics of Potential Molecular Qubits</title><title>Inorganic chemistry</title><addtitle>Inorg. Chem</addtitle><description>Control of spin–lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium­(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin–lattice relaxation time as a function of the magnetic field, for S = 1/2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0–6.0 μs in the 4–100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.</description><issn>0020-1669</issn><issn>1520-510X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1PwzAMhiMEYmPwE0A9ctlwkjZtj2iMD2kI0EDiViWZwzq1zUjSw_49mTa4crJlPa8tP4RcUphQYPRGaj-pO-u-9ArbSa6ACSqOyJBmDMYZhc9jMgSIPRWiHJAz79cAUPJUnJIBK1kBghVDMlsE1-vQO9kkM2NQB5_YLgkrTBabukvutp1sax2HJnm1AbtQR_LZNqj7RrrkrVd18OfkxMjG48WhjsjH_ex9-jievzw8TW_nY5mKNIwRDShpjOIFy5hhjOcKeZ6WqRRiqXKJtKClWqZcFCBNmlNEDsJwJSBXVPIRud7v3Tj73aMPVVt7jU0jO7S9r2hZUMhijkc026PaWe8dmmrj6la6bUWh2hmsosHqz2B1MBhzV4cTvWpx-Zf6VRYBugd2-bXtXRc__mfpD0HegUU</recordid><startdate>20180116</startdate><enddate>20180116</enddate><creator>Atzori, Matteo</creator><creator>Benci, Stefano</creator><creator>Morra, Elena</creator><creator>Tesi, Lorenzo</creator><creator>Chiesa, Mario</creator><creator>Torre, Renato</creator><creator>Sorace, Lorenzo</creator><creator>Sessoli, Roberta</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-3783-2700</orcidid><orcidid>https://orcid.org/0000-0003-1357-6159</orcidid><orcidid>https://orcid.org/0000-0003-4785-1331</orcidid><orcidid>https://orcid.org/0000-0001-8128-8031</orcidid><orcidid>https://orcid.org/0000-0003-4001-8363</orcidid><orcidid>https://orcid.org/0000-0001-6492-1616</orcidid></search><sort><creationdate>20180116</creationdate><title>Structural Effects on the Spin Dynamics of Potential Molecular Qubits</title><author>Atzori, Matteo ; Benci, Stefano ; Morra, Elena ; Tesi, Lorenzo ; Chiesa, Mario ; Torre, Renato ; Sorace, Lorenzo ; Sessoli, Roberta</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a464t-eef0baffb38252f2237be37494a66db7ae1819bd43680af471ee306f3b607b1a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Atzori, Matteo</creatorcontrib><creatorcontrib>Benci, Stefano</creatorcontrib><creatorcontrib>Morra, Elena</creatorcontrib><creatorcontrib>Tesi, Lorenzo</creatorcontrib><creatorcontrib>Chiesa, Mario</creatorcontrib><creatorcontrib>Torre, Renato</creatorcontrib><creatorcontrib>Sorace, Lorenzo</creatorcontrib><creatorcontrib>Sessoli, Roberta</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Inorganic chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Atzori, Matteo</au><au>Benci, Stefano</au><au>Morra, Elena</au><au>Tesi, Lorenzo</au><au>Chiesa, Mario</au><au>Torre, Renato</au><au>Sorace, Lorenzo</au><au>Sessoli, Roberta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural Effects on the Spin Dynamics of Potential Molecular Qubits</atitle><jtitle>Inorganic chemistry</jtitle><addtitle>Inorg. Chem</addtitle><date>2018-01-16</date><risdate>2018</risdate><volume>57</volume><issue>2</issue><spage>731</spage><epage>740</epage><pages>731-740</pages><issn>0020-1669</issn><eissn>1520-510X</eissn><abstract>Control of spin–lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium­(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin–lattice relaxation time as a function of the magnetic field, for S = 1/2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0–6.0 μs in the 4–100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29280628</pmid><doi>10.1021/acs.inorgchem.7b02616</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3783-2700</orcidid><orcidid>https://orcid.org/0000-0003-1357-6159</orcidid><orcidid>https://orcid.org/0000-0003-4785-1331</orcidid><orcidid>https://orcid.org/0000-0001-8128-8031</orcidid><orcidid>https://orcid.org/0000-0003-4001-8363</orcidid><orcidid>https://orcid.org/0000-0001-6492-1616</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0020-1669
ispartof Inorganic chemistry, 2018-01, Vol.57 (2), p.731-740
issn 0020-1669
1520-510X
language eng
recordid cdi_proquest_miscellaneous_1981054713
source ACS Publications
title Structural Effects on the Spin Dynamics of Potential Molecular Qubits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-11T03%3A06%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20Effects%20on%20the%20Spin%20Dynamics%20of%20Potential%20Molecular%20Qubits&rft.jtitle=Inorganic%20chemistry&rft.au=Atzori,%20Matteo&rft.date=2018-01-16&rft.volume=57&rft.issue=2&rft.spage=731&rft.epage=740&rft.pages=731-740&rft.issn=0020-1669&rft.eissn=1520-510X&rft_id=info:doi/10.1021/acs.inorgchem.7b02616&rft_dat=%3Cproquest_cross%3E1981054713%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981054713&rft_id=info:pmid/29280628&rfr_iscdi=true