Phytomelatonin: a universal abiotic stress regulator

This review summarizes phytomelatonin-modulated stress responses and plant development pathways, and highlights interactions between melatonin and other phytohormones. Abstract Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a diverse re...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of experimental botany 2018-02, Vol.69 (5), p.963-974
Hauptverfasser: Wang, Yanping, Reiter, Russel J, Chan, Zhulong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 974
container_issue 5
container_start_page 963
container_title Journal of experimental botany
container_volume 69
creator Wang, Yanping
Reiter, Russel J
Chan, Zhulong
description This review summarizes phytomelatonin-modulated stress responses and plant development pathways, and highlights interactions between melatonin and other phytohormones. Abstract Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a diverse regulator during plant growth and development, and in stress responses. Recently, great progress has been made towards determining the detailed functions of melatonin in plant responses to abiotic stress. Melatonin priming improves plant tolerance to cold, heat, salt, and drought stresses through regulation of genes involved in the DREB/CBF, HSF, SOS, and ABA pathways, respectively. As a scavenger of free radicals, melatonin also directly detoxifies reactive oxygen species, thus alleviating membrane oxidation. Abiotic stress-inhibited photosynthesis is partially recovered and metabolites accumulate in the presence of melatonin, leading to improved plant growth, delayed leaf senescence, and increased stress tolerance. In this review, we summarize the interactions of melatonin with phytohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. Finally, we consider the need for, and approaches to, the identification of melatonin receptors and components during signaling transduction pathways.
doi_str_mv 10.1093/jxb/erx473
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1981051604</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/jxb/erx473</oup_id><sourcerecordid>1981051604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c353t-4c476dff783f44c808aff42f5328ade185edd2a0612fcc6d2a3b42ca76f678e23</originalsourceid><addsrcrecordid>eNp90M1LwzAYx_EgipvTi3-A9CKIUPfktak3Gb7BQA96DmmaaEfbzKSV7b-3o9Ojp-Tw4QfPF6FzDDcYcjpfbYq5DRuW0QM0xUxAShjFh2gKQEgKOc8m6CTGFQBw4PwYTUhOJAYupoi9fm4739had76t2ttEJ31bfdsQdZ3oovJdZZLYBRtjEuxHv3PhFB05XUd7tn9n6P3h_m3xlC5fHp8Xd8vUUE67lBmWidK5TFLHmJEgtXOMOE6J1KXFktuyJBoEJs4YMXxpwYjRmXAik5bQGboad9fBf_U2dqqporF1rVvr-6hwvrsCC2ADvR6pCT7GYJ1ah6rRYaswqF0lNVRSY6UBX-x3-6Kx5R_9zTKAyxH4fv3f0A8RhnCP</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1981051604</pqid></control><display><type>article</type><title>Phytomelatonin: a universal abiotic stress regulator</title><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Wang, Yanping ; Reiter, Russel J ; Chan, Zhulong</creator><creatorcontrib>Wang, Yanping ; Reiter, Russel J ; Chan, Zhulong</creatorcontrib><description>This review summarizes phytomelatonin-modulated stress responses and plant development pathways, and highlights interactions between melatonin and other phytohormones. Abstract Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a diverse regulator during plant growth and development, and in stress responses. Recently, great progress has been made towards determining the detailed functions of melatonin in plant responses to abiotic stress. Melatonin priming improves plant tolerance to cold, heat, salt, and drought stresses through regulation of genes involved in the DREB/CBF, HSF, SOS, and ABA pathways, respectively. As a scavenger of free radicals, melatonin also directly detoxifies reactive oxygen species, thus alleviating membrane oxidation. Abiotic stress-inhibited photosynthesis is partially recovered and metabolites accumulate in the presence of melatonin, leading to improved plant growth, delayed leaf senescence, and increased stress tolerance. In this review, we summarize the interactions of melatonin with phytohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. Finally, we consider the need for, and approaches to, the identification of melatonin receptors and components during signaling transduction pathways.</description><identifier>ISSN: 0022-0957</identifier><identifier>EISSN: 1460-2431</identifier><identifier>DOI: 10.1093/jxb/erx473</identifier><identifier>PMID: 29281056</identifier><language>eng</language><publisher>UK: Oxford University Press</publisher><ispartof>Journal of experimental botany, 2018-02, Vol.69 (5), p.963-974</ispartof><rights>The Author(s) 2017. Published by Oxford University Press on behalf of the Society for Experimental Biology. All rights reserved. For permissions, please email: journals.permissions@oup.com 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c353t-4c476dff783f44c808aff42f5328ade185edd2a0612fcc6d2a3b42ca76f678e23</citedby><cites>FETCH-LOGICAL-c353t-4c476dff783f44c808aff42f5328ade185edd2a0612fcc6d2a3b42ca76f678e23</cites><orcidid>0000-0002-1933-6837</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1578,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29281056$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wang, Yanping</creatorcontrib><creatorcontrib>Reiter, Russel J</creatorcontrib><creatorcontrib>Chan, Zhulong</creatorcontrib><title>Phytomelatonin: a universal abiotic stress regulator</title><title>Journal of experimental botany</title><addtitle>J Exp Bot</addtitle><description>This review summarizes phytomelatonin-modulated stress responses and plant development pathways, and highlights interactions between melatonin and other phytohormones. Abstract Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a diverse regulator during plant growth and development, and in stress responses. Recently, great progress has been made towards determining the detailed functions of melatonin in plant responses to abiotic stress. Melatonin priming improves plant tolerance to cold, heat, salt, and drought stresses through regulation of genes involved in the DREB/CBF, HSF, SOS, and ABA pathways, respectively. As a scavenger of free radicals, melatonin also directly detoxifies reactive oxygen species, thus alleviating membrane oxidation. Abiotic stress-inhibited photosynthesis is partially recovered and metabolites accumulate in the presence of melatonin, leading to improved plant growth, delayed leaf senescence, and increased stress tolerance. In this review, we summarize the interactions of melatonin with phytohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. Finally, we consider the need for, and approaches to, the identification of melatonin receptors and components during signaling transduction pathways.</description><issn>0022-0957</issn><issn>1460-2431</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp90M1LwzAYx_EgipvTi3-A9CKIUPfktak3Gb7BQA96DmmaaEfbzKSV7b-3o9Ojp-Tw4QfPF6FzDDcYcjpfbYq5DRuW0QM0xUxAShjFh2gKQEgKOc8m6CTGFQBw4PwYTUhOJAYupoi9fm4739had76t2ttEJ31bfdsQdZ3oovJdZZLYBRtjEuxHv3PhFB05XUd7tn9n6P3h_m3xlC5fHp8Xd8vUUE67lBmWidK5TFLHmJEgtXOMOE6J1KXFktuyJBoEJs4YMXxpwYjRmXAik5bQGboad9fBf_U2dqqporF1rVvr-6hwvrsCC2ADvR6pCT7GYJ1ah6rRYaswqF0lNVRSY6UBX-x3-6Kx5R_9zTKAyxH4fv3f0A8RhnCP</recordid><startdate>20180223</startdate><enddate>20180223</enddate><creator>Wang, Yanping</creator><creator>Reiter, Russel J</creator><creator>Chan, Zhulong</creator><general>Oxford University Press</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-1933-6837</orcidid></search><sort><creationdate>20180223</creationdate><title>Phytomelatonin: a universal abiotic stress regulator</title><author>Wang, Yanping ; Reiter, Russel J ; Chan, Zhulong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c353t-4c476dff783f44c808aff42f5328ade185edd2a0612fcc6d2a3b42ca76f678e23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yanping</creatorcontrib><creatorcontrib>Reiter, Russel J</creatorcontrib><creatorcontrib>Chan, Zhulong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of experimental botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Yanping</au><au>Reiter, Russel J</au><au>Chan, Zhulong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phytomelatonin: a universal abiotic stress regulator</atitle><jtitle>Journal of experimental botany</jtitle><addtitle>J Exp Bot</addtitle><date>2018-02-23</date><risdate>2018</risdate><volume>69</volume><issue>5</issue><spage>963</spage><epage>974</epage><pages>963-974</pages><issn>0022-0957</issn><eissn>1460-2431</eissn><abstract>This review summarizes phytomelatonin-modulated stress responses and plant development pathways, and highlights interactions between melatonin and other phytohormones. Abstract Melatonin, a derivative of tryptophan, was first detected in plant species in 1995 and it has been shown to be a diverse regulator during plant growth and development, and in stress responses. Recently, great progress has been made towards determining the detailed functions of melatonin in plant responses to abiotic stress. Melatonin priming improves plant tolerance to cold, heat, salt, and drought stresses through regulation of genes involved in the DREB/CBF, HSF, SOS, and ABA pathways, respectively. As a scavenger of free radicals, melatonin also directly detoxifies reactive oxygen species, thus alleviating membrane oxidation. Abiotic stress-inhibited photosynthesis is partially recovered and metabolites accumulate in the presence of melatonin, leading to improved plant growth, delayed leaf senescence, and increased stress tolerance. In this review, we summarize the interactions of melatonin with phytohormones to regulate downstream gene expression, protein stabilization, and epigenetic modification in plants. Finally, we consider the need for, and approaches to, the identification of melatonin receptors and components during signaling transduction pathways.</abstract><cop>UK</cop><pub>Oxford University Press</pub><pmid>29281056</pmid><doi>10.1093/jxb/erx473</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-1933-6837</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-0957
ispartof Journal of experimental botany, 2018-02, Vol.69 (5), p.963-974
issn 0022-0957
1460-2431
language eng
recordid cdi_proquest_miscellaneous_1981051604
source Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection
title Phytomelatonin: a universal abiotic stress regulator
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T10%3A46%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phytomelatonin:%20a%20universal%20abiotic%20stress%20regulator&rft.jtitle=Journal%20of%20experimental%20botany&rft.au=Wang,%20Yanping&rft.date=2018-02-23&rft.volume=69&rft.issue=5&rft.spage=963&rft.epage=974&rft.pages=963-974&rft.issn=0022-0957&rft.eissn=1460-2431&rft_id=info:doi/10.1093/jxb/erx473&rft_dat=%3Cproquest_cross%3E1981051604%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1981051604&rft_id=info:pmid/29281056&rft_oup_id=10.1093/jxb/erx473&rfr_iscdi=true