Metagenomic Characterization of Chesapeake Bay Virioplankton

Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied and Environmental Microbiology 2007-12, Vol.73 (23), p.7629-7641
Hauptverfasser: Bench, Shellie R, Hanson, Thomas E, Williamson, Kurt E, Ghosh, Dhritiman, Radosovich, Mark, Wang, Kui, Wommack, K. Eric
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 7641
container_issue 23
container_start_page 7629
container_title Applied and Environmental Microbiology
container_volume 73
creator Bench, Shellie R
Hanson, Thomas E
Williamson, Kurt E
Ghosh, Dhritiman
Radosovich, Mark
Wang, Kui
Wommack, K. Eric
description Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by PODOVIRIDAE:
doi_str_mv 10.1128/AEM.00938-07
format Article
fullrecord <record><control><sourceid>proquest_highw</sourceid><recordid>TN_cdi_proquest_miscellaneous_19802322</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>68539951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-9c142b3205e92ac80a9a28d62eaeffa5db8b23630a8cef024f14906afe0f0c2f3</originalsourceid><addsrcrecordid>eNqF0U1vEzEQBuAVAtG0cOMMERKc2DIe74ctIaQSlQ-pFQcoV2vijBO3u-vU3hSVX49LIgJcOFkaP3rl8VsUTwQcC4Hq9cnp-TGAlqqE9l4xEaBVWUvZ3C8meaxLxAoOisOULgGggkY9LA5Eq1FgW02KN-c80pKH0Hs7na0okh05-h80-jBMg8szTrRmuuLpO7qdfvPRh3VHw9UYhkfFA0dd4se786i4eH_6dfaxPPv84dPs5Ky0tWrHUltR4Vwi1KyRrALShGrRIBM7R_ViruYoGwmkLDvAyolKQ0OOwYFFJ4-Kt9vc9Wbe88LyMEbqzDr6nuKtCeTN3zeDX5lluDEoGgVS5YCXu4AYrjecRtP7ZLnLe3DYJNOoWmpdi_9CoRWgRMzw-T_wMmzikH_B5D110wLcoVdbZGNIKbL7_WQB5q48k8szv8oz0Gb-9M8193jXVgYvdoCSpc5FGqxPe6eVlhLV_nErv1x995ENpd4Q96aVBqVpG9QZPdsiR8HQMuagiy8IQgIoCZVA-RN9-bYv</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>205967002</pqid></control><display><type>article</type><title>Metagenomic Characterization of Chesapeake Bay Virioplankton</title><source>American Society for Microbiology</source><source>MEDLINE</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Bench, Shellie R ; Hanson, Thomas E ; Williamson, Kurt E ; Ghosh, Dhritiman ; Radosovich, Mark ; Wang, Kui ; Wommack, K. Eric</creator><creatorcontrib>Bench, Shellie R ; Hanson, Thomas E ; Williamson, Kurt E ; Ghosh, Dhritiman ; Radosovich, Mark ; Wang, Kui ; Wommack, K. Eric</creatorcontrib><description>Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by PODOVIRIDAE:</description><identifier>ISSN: 0099-2240</identifier><identifier>EISSN: 1098-5336</identifier><identifier>DOI: 10.1128/AEM.00938-07</identifier><identifier>PMID: 17921274</identifier><identifier>CODEN: AEMIDF</identifier><language>eng</language><publisher>Washington, DC: American Society for Microbiology</publisher><subject>Animal, plant and microbial ecology ; Biodiversity ; Biological and medical sciences ; Brackish ; Cluster Analysis ; Deoxyribonucleic acid ; DNA ; Electrophoresis, Gel, Pulsed-Field ; Fundamental and applied biological sciences. Psychology ; Genetic diversity ; Genetic Variation ; Genome, Viral ; Genomics ; Microbial Ecology ; Microbiology ; Molecular Sequence Data ; Phylogeny ; Plankton ; Podoviridae ; Proteins ; Seawater - virology ; Sequence Analysis, DNA ; United States ; Various environments (extraatmospheric space, air, water) ; Viruses ; Viruses - classification ; Viruses - genetics ; Viruses - growth &amp; development ; Water Microbiology</subject><ispartof>Applied and Environmental Microbiology, 2007-12, Vol.73 (23), p.7629-7641</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright American Society for Microbiology Dec 2007</rights><rights>Copyright © 2007, American Society for Microbiology</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-9c142b3205e92ac80a9a28d62eaeffa5db8b23630a8cef024f14906afe0f0c2f3</citedby><cites>FETCH-LOGICAL-c587t-9c142b3205e92ac80a9a28d62eaeffa5db8b23630a8cef024f14906afe0f0c2f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168038/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2168038/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,3190,3191,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19893328$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17921274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bench, Shellie R</creatorcontrib><creatorcontrib>Hanson, Thomas E</creatorcontrib><creatorcontrib>Williamson, Kurt E</creatorcontrib><creatorcontrib>Ghosh, Dhritiman</creatorcontrib><creatorcontrib>Radosovich, Mark</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Wommack, K. Eric</creatorcontrib><title>Metagenomic Characterization of Chesapeake Bay Virioplankton</title><title>Applied and Environmental Microbiology</title><addtitle>Appl Environ Microbiol</addtitle><description>Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by PODOVIRIDAE:</description><subject>Animal, plant and microbial ecology</subject><subject>Biodiversity</subject><subject>Biological and medical sciences</subject><subject>Brackish</subject><subject>Cluster Analysis</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>Electrophoresis, Gel, Pulsed-Field</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genetic diversity</subject><subject>Genetic Variation</subject><subject>Genome, Viral</subject><subject>Genomics</subject><subject>Microbial Ecology</subject><subject>Microbiology</subject><subject>Molecular Sequence Data</subject><subject>Phylogeny</subject><subject>Plankton</subject><subject>Podoviridae</subject><subject>Proteins</subject><subject>Seawater - virology</subject><subject>Sequence Analysis, DNA</subject><subject>United States</subject><subject>Various environments (extraatmospheric space, air, water)</subject><subject>Viruses</subject><subject>Viruses - classification</subject><subject>Viruses - genetics</subject><subject>Viruses - growth &amp; development</subject><subject>Water Microbiology</subject><issn>0099-2240</issn><issn>1098-5336</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0U1vEzEQBuAVAtG0cOMMERKc2DIe74ctIaQSlQ-pFQcoV2vijBO3u-vU3hSVX49LIgJcOFkaP3rl8VsUTwQcC4Hq9cnp-TGAlqqE9l4xEaBVWUvZ3C8meaxLxAoOisOULgGggkY9LA5Eq1FgW02KN-c80pKH0Hs7na0okh05-h80-jBMg8szTrRmuuLpO7qdfvPRh3VHw9UYhkfFA0dd4se786i4eH_6dfaxPPv84dPs5Ky0tWrHUltR4Vwi1KyRrALShGrRIBM7R_ViruYoGwmkLDvAyolKQ0OOwYFFJ4-Kt9vc9Wbe88LyMEbqzDr6nuKtCeTN3zeDX5lluDEoGgVS5YCXu4AYrjecRtP7ZLnLe3DYJNOoWmpdi_9CoRWgRMzw-T_wMmzikH_B5D110wLcoVdbZGNIKbL7_WQB5q48k8szv8oz0Gb-9M8193jXVgYvdoCSpc5FGqxPe6eVlhLV_nErv1x995ENpd4Q96aVBqVpG9QZPdsiR8HQMuagiy8IQgIoCZVA-RN9-bYv</recordid><startdate>20071201</startdate><enddate>20071201</enddate><creator>Bench, Shellie R</creator><creator>Hanson, Thomas E</creator><creator>Williamson, Kurt E</creator><creator>Ghosh, Dhritiman</creator><creator>Radosovich, Mark</creator><creator>Wang, Kui</creator><creator>Wommack, K. Eric</creator><general>American Society for Microbiology</general><general>American Society for Microbiology (ASM)</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T7</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>SOI</scope><scope>7TN</scope><scope>F1W</scope><scope>H95</scope><scope>L.G</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071201</creationdate><title>Metagenomic Characterization of Chesapeake Bay Virioplankton</title><author>Bench, Shellie R ; Hanson, Thomas E ; Williamson, Kurt E ; Ghosh, Dhritiman ; Radosovich, Mark ; Wang, Kui ; Wommack, K. Eric</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-9c142b3205e92ac80a9a28d62eaeffa5db8b23630a8cef024f14906afe0f0c2f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Animal, plant and microbial ecology</topic><topic>Biodiversity</topic><topic>Biological and medical sciences</topic><topic>Brackish</topic><topic>Cluster Analysis</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>Electrophoresis, Gel, Pulsed-Field</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genetic diversity</topic><topic>Genetic Variation</topic><topic>Genome, Viral</topic><topic>Genomics</topic><topic>Microbial Ecology</topic><topic>Microbiology</topic><topic>Molecular Sequence Data</topic><topic>Phylogeny</topic><topic>Plankton</topic><topic>Podoviridae</topic><topic>Proteins</topic><topic>Seawater - virology</topic><topic>Sequence Analysis, DNA</topic><topic>United States</topic><topic>Various environments (extraatmospheric space, air, water)</topic><topic>Viruses</topic><topic>Viruses - classification</topic><topic>Viruses - genetics</topic><topic>Viruses - growth &amp; development</topic><topic>Water Microbiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bench, Shellie R</creatorcontrib><creatorcontrib>Hanson, Thomas E</creatorcontrib><creatorcontrib>Williamson, Kurt E</creatorcontrib><creatorcontrib>Ghosh, Dhritiman</creatorcontrib><creatorcontrib>Radosovich, Mark</creatorcontrib><creatorcontrib>Wang, Kui</creatorcontrib><creatorcontrib>Wommack, K. Eric</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>Oceanic Abstracts</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Applied and Environmental Microbiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bench, Shellie R</au><au>Hanson, Thomas E</au><au>Williamson, Kurt E</au><au>Ghosh, Dhritiman</au><au>Radosovich, Mark</au><au>Wang, Kui</au><au>Wommack, K. Eric</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metagenomic Characterization of Chesapeake Bay Virioplankton</atitle><jtitle>Applied and Environmental Microbiology</jtitle><addtitle>Appl Environ Microbiol</addtitle><date>2007-12-01</date><risdate>2007</risdate><volume>73</volume><issue>23</issue><spage>7629</spage><epage>7641</epage><pages>7629-7641</pages><issn>0099-2240</issn><eissn>1098-5336</eissn><coden>AEMIDF</coden><abstract>Viruses are ubiquitous and abundant throughout the biosphere. In marine systems, virus-mediated processes can have significant impacts on microbial diversity and on global biogeocehmical cycling. However, viral genetic diversity remains poorly characterized. To address this shortcoming, a metagenomic library was constructed from Chesapeake Bay virioplankton. The resulting sequences constitute the largest collection of long-read double-stranded DNA (dsDNA) viral metagenome data reported to date. BLAST homology comparisons showed that Chesapeake Bay virioplankton contained a high proportion of unknown (homologous only to environmental sequences) and novel (no significant homolog) sequences. This analysis suggests that dsDNA viruses are likely one of the largest reservoirs of unknown genetic diversity in the biosphere. The taxonomic origin of BLAST homologs to viral library sequences agreed well with reported abundances of cooccurring bacterial subphyla within the estuary and indicated that cyanophages were abundant. However, the low proportion of Siphophage homologs contradicts a previous assertion that this family comprises most bacteriophage diversity. Identification and analyses of cyanobacterial homologs of the psbA gene illustrated the value of metagenomic studies of virioplankton. The phylogeny of inferred PsbA protein sequences suggested that Chesapeake Bay cyanophage strains are endemic in that environment. The ratio of psbA homologous sequences to total cyanophage sequences in the metagenome indicated that the psbA gene may be nearly universal in Chesapeake Bay cyanophage genomes. Furthermore, the low frequency of psbD homologs in the library supports the prediction that Chesapeake Bay cyanophage populations are dominated by PODOVIRIDAE:</abstract><cop>Washington, DC</cop><pub>American Society for Microbiology</pub><pmid>17921274</pmid><doi>10.1128/AEM.00938-07</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0099-2240
ispartof Applied and Environmental Microbiology, 2007-12, Vol.73 (23), p.7629-7641
issn 0099-2240
1098-5336
language eng
recordid cdi_proquest_miscellaneous_19802322
source American Society for Microbiology; MEDLINE; PubMed Central; Alma/SFX Local Collection
subjects Animal, plant and microbial ecology
Biodiversity
Biological and medical sciences
Brackish
Cluster Analysis
Deoxyribonucleic acid
DNA
Electrophoresis, Gel, Pulsed-Field
Fundamental and applied biological sciences. Psychology
Genetic diversity
Genetic Variation
Genome, Viral
Genomics
Microbial Ecology
Microbiology
Molecular Sequence Data
Phylogeny
Plankton
Podoviridae
Proteins
Seawater - virology
Sequence Analysis, DNA
United States
Various environments (extraatmospheric space, air, water)
Viruses
Viruses - classification
Viruses - genetics
Viruses - growth & development
Water Microbiology
title Metagenomic Characterization of Chesapeake Bay Virioplankton
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T04%3A01%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_highw&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metagenomic%20Characterization%20of%20Chesapeake%20Bay%20Virioplankton&rft.jtitle=Applied%20and%20Environmental%20Microbiology&rft.au=Bench,%20Shellie%20R&rft.date=2007-12-01&rft.volume=73&rft.issue=23&rft.spage=7629&rft.epage=7641&rft.pages=7629-7641&rft.issn=0099-2240&rft.eissn=1098-5336&rft.coden=AEMIDF&rft_id=info:doi/10.1128/AEM.00938-07&rft_dat=%3Cproquest_highw%3E68539951%3C/proquest_highw%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=205967002&rft_id=info:pmid/17921274&rfr_iscdi=true