Weather variables and the El Niño Southern Oscillation may drive the epidemics of dengue in Guangdong Province, China
To investigate the periodicity of dengue and the relationship between weather variables, El Niño Southern Oscillation (ENSO) and dengue incidence in Guangdong Province, China. Guangdong monthly dengue incidence and weather data and El Niño index information for 1988 to 2015 were collected. Wavelet a...
Gespeichert in:
Veröffentlicht in: | The Science of the total environment 2018-05, Vol.624, p.926-934 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 934 |
---|---|
container_issue | |
container_start_page | 926 |
container_title | The Science of the total environment |
container_volume | 624 |
creator | Xiao, Jianpeng Liu, Tao Lin, Hualiang Zhu, Guanghu Zeng, Weilin Li, Xing Zhang, Bing Song, Tie Deng, Aiping Zhang, Meng Zhong, Haojie Lin, Shao Rutherford, Shannon Meng, Xiaojing Zhang, Yonghui Ma, Wenjun |
description | To investigate the periodicity of dengue and the relationship between weather variables, El Niño Southern Oscillation (ENSO) and dengue incidence in Guangdong Province, China.
Guangdong monthly dengue incidence and weather data and El Niño index information for 1988 to 2015 were collected. Wavelet analysis was used to investigate the periodicity of dengue, and the coherence and time-lag phases between dengue and weather variables and ENSO. The Generalized Additive Model (GAM) approach was further employed to explore the dose-response relationship of those variables on dengue. Finally, random forest analysis was applied to measure the relative importance of the climate predictors.
Dengue in Guangdong has a dominant annual periodicity over the period 1988–2015. Mean minimum temperature, total precipitation, and mean relative humidity are positively related to dengue incidence for 2, 3, and 4months lag, respectively. ENSO in the previous 12months may have driven the dengue epidemics in 1995, 2002, 2006 and 2010 in Guangdong. GAM analysis indicates an approximate linear association for the temperature-dengue relationship, approximate logarithm curve for the humidity-dengue relationship, and an inverted U-shape association for the precipitation-dengue (the threshold of precipitation is 348mm per month) and ENSO-dengue relationships (the threshold of ENSO index is 0.6°C). The monthly mean minimum temperature in the previous two months was identified as the most important climate variable associated with dengue epidemics in Guangdong Province.
Our study suggests weather factors and ENSO are important predictors of dengue incidence. These findings provide useful evidence for early warning systems to help to respond to the global expansion of dengue fever.
[Display omitted]
•Dengue in Guangdong does not have an obvious multiyear periodicity.•Temperature, precipitation, relative humidity and ENSO are positively related to dengue incidence for different lag months.•ENSO in the previous year may drive dengue epidemics.•Monthly minimum temperature in the previous two months may be the most important climatic variable. |
doi_str_mv | 10.1016/j.scitotenv.2017.12.200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1980103602</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969717336331</els_id><sourcerecordid>1980103602</sourcerecordid><originalsourceid>FETCH-LOGICAL-c371t-d0764688e489fdd2aae0673ab59906a5a0ef38cc719e1a70908119af8a45f40f3</originalsourceid><addsrcrecordid>eNqFkE1uFDEQRi0EIkPgCuAlC3oou39sL6NRSJAiggSIpeWxqycedduD3d1SjsUZuFg8TMgWbz7JelWf6hHyjsGaAes-7tfZ-ilOGJY1BybWjJeEZ2TFpFAVA949JyuARlaqU-KMvMp5D-UJyV6SM664aHnbrsjyE810h4kuJnmzHTBTExwtX_RyoF_8n9-RfovzEQn0tpQOg5l8DHQ099Qlv-BfFg_e4ehtprGnDsNuRuoDvZpN2LkYdvRriosPFj_QzZ0P5jV50Zsh45vHPCc_Pl1-31xXN7dXnzcXN5WtBZsqB6JrOimxkap3jhuD0InabFuloDOtAexraa1gCpkRoEAypkwvTdP2DfT1OXl_2ntI8deMedKjzxbLEQHjnDVTEhjUHfCCihNqU8w5Ya8PyY8m3WsG-ihd7_WTdH2UrhkvCWXy7WPJvB3RPc39s1yAixOA5dTFYzouwmLD-YR20i76_5Y8ALeHmQU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1980103602</pqid></control><display><type>article</type><title>Weather variables and the El Niño Southern Oscillation may drive the epidemics of dengue in Guangdong Province, China</title><source>ScienceDirect Journals (5 years ago - present)</source><creator>Xiao, Jianpeng ; Liu, Tao ; Lin, Hualiang ; Zhu, Guanghu ; Zeng, Weilin ; Li, Xing ; Zhang, Bing ; Song, Tie ; Deng, Aiping ; Zhang, Meng ; Zhong, Haojie ; Lin, Shao ; Rutherford, Shannon ; Meng, Xiaojing ; Zhang, Yonghui ; Ma, Wenjun</creator><creatorcontrib>Xiao, Jianpeng ; Liu, Tao ; Lin, Hualiang ; Zhu, Guanghu ; Zeng, Weilin ; Li, Xing ; Zhang, Bing ; Song, Tie ; Deng, Aiping ; Zhang, Meng ; Zhong, Haojie ; Lin, Shao ; Rutherford, Shannon ; Meng, Xiaojing ; Zhang, Yonghui ; Ma, Wenjun</creatorcontrib><description>To investigate the periodicity of dengue and the relationship between weather variables, El Niño Southern Oscillation (ENSO) and dengue incidence in Guangdong Province, China.
Guangdong monthly dengue incidence and weather data and El Niño index information for 1988 to 2015 were collected. Wavelet analysis was used to investigate the periodicity of dengue, and the coherence and time-lag phases between dengue and weather variables and ENSO. The Generalized Additive Model (GAM) approach was further employed to explore the dose-response relationship of those variables on dengue. Finally, random forest analysis was applied to measure the relative importance of the climate predictors.
Dengue in Guangdong has a dominant annual periodicity over the period 1988–2015. Mean minimum temperature, total precipitation, and mean relative humidity are positively related to dengue incidence for 2, 3, and 4months lag, respectively. ENSO in the previous 12months may have driven the dengue epidemics in 1995, 2002, 2006 and 2010 in Guangdong. GAM analysis indicates an approximate linear association for the temperature-dengue relationship, approximate logarithm curve for the humidity-dengue relationship, and an inverted U-shape association for the precipitation-dengue (the threshold of precipitation is 348mm per month) and ENSO-dengue relationships (the threshold of ENSO index is 0.6°C). The monthly mean minimum temperature in the previous two months was identified as the most important climate variable associated with dengue epidemics in Guangdong Province.
Our study suggests weather factors and ENSO are important predictors of dengue incidence. These findings provide useful evidence for early warning systems to help to respond to the global expansion of dengue fever.
[Display omitted]
•Dengue in Guangdong does not have an obvious multiyear periodicity.•Temperature, precipitation, relative humidity and ENSO are positively related to dengue incidence for different lag months.•ENSO in the previous year may drive dengue epidemics.•Monthly minimum temperature in the previous two months may be the most important climatic variable.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2017.12.200</identifier><identifier>PMID: 29275255</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Climate variables ; Dengue ; El Niño ; Wavelet analysis</subject><ispartof>The Science of the total environment, 2018-05, Vol.624, p.926-934</ispartof><rights>2017 Elsevier B.V.</rights><rights>Copyright © 2017. Published by Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c371t-d0764688e489fdd2aae0673ab59906a5a0ef38cc719e1a70908119af8a45f40f3</citedby><cites>FETCH-LOGICAL-c371t-d0764688e489fdd2aae0673ab59906a5a0ef38cc719e1a70908119af8a45f40f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.scitotenv.2017.12.200$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29275255$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Xiao, Jianpeng</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Lin, Hualiang</creatorcontrib><creatorcontrib>Zhu, Guanghu</creatorcontrib><creatorcontrib>Zeng, Weilin</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Song, Tie</creatorcontrib><creatorcontrib>Deng, Aiping</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Zhong, Haojie</creatorcontrib><creatorcontrib>Lin, Shao</creatorcontrib><creatorcontrib>Rutherford, Shannon</creatorcontrib><creatorcontrib>Meng, Xiaojing</creatorcontrib><creatorcontrib>Zhang, Yonghui</creatorcontrib><creatorcontrib>Ma, Wenjun</creatorcontrib><title>Weather variables and the El Niño Southern Oscillation may drive the epidemics of dengue in Guangdong Province, China</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>To investigate the periodicity of dengue and the relationship between weather variables, El Niño Southern Oscillation (ENSO) and dengue incidence in Guangdong Province, China.
Guangdong monthly dengue incidence and weather data and El Niño index information for 1988 to 2015 were collected. Wavelet analysis was used to investigate the periodicity of dengue, and the coherence and time-lag phases between dengue and weather variables and ENSO. The Generalized Additive Model (GAM) approach was further employed to explore the dose-response relationship of those variables on dengue. Finally, random forest analysis was applied to measure the relative importance of the climate predictors.
Dengue in Guangdong has a dominant annual periodicity over the period 1988–2015. Mean minimum temperature, total precipitation, and mean relative humidity are positively related to dengue incidence for 2, 3, and 4months lag, respectively. ENSO in the previous 12months may have driven the dengue epidemics in 1995, 2002, 2006 and 2010 in Guangdong. GAM analysis indicates an approximate linear association for the temperature-dengue relationship, approximate logarithm curve for the humidity-dengue relationship, and an inverted U-shape association for the precipitation-dengue (the threshold of precipitation is 348mm per month) and ENSO-dengue relationships (the threshold of ENSO index is 0.6°C). The monthly mean minimum temperature in the previous two months was identified as the most important climate variable associated with dengue epidemics in Guangdong Province.
Our study suggests weather factors and ENSO are important predictors of dengue incidence. These findings provide useful evidence for early warning systems to help to respond to the global expansion of dengue fever.
[Display omitted]
•Dengue in Guangdong does not have an obvious multiyear periodicity.•Temperature, precipitation, relative humidity and ENSO are positively related to dengue incidence for different lag months.•ENSO in the previous year may drive dengue epidemics.•Monthly minimum temperature in the previous two months may be the most important climatic variable.</description><subject>Climate variables</subject><subject>Dengue</subject><subject>El Niño</subject><subject>Wavelet analysis</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkE1uFDEQRi0EIkPgCuAlC3oou39sL6NRSJAiggSIpeWxqycedduD3d1SjsUZuFg8TMgWbz7JelWf6hHyjsGaAes-7tfZ-ilOGJY1BybWjJeEZ2TFpFAVA949JyuARlaqU-KMvMp5D-UJyV6SM664aHnbrsjyE810h4kuJnmzHTBTExwtX_RyoF_8n9-RfovzEQn0tpQOg5l8DHQ099Qlv-BfFg_e4ehtprGnDsNuRuoDvZpN2LkYdvRriosPFj_QzZ0P5jV50Zsh45vHPCc_Pl1-31xXN7dXnzcXN5WtBZsqB6JrOimxkap3jhuD0InabFuloDOtAexraa1gCpkRoEAypkwvTdP2DfT1OXl_2ntI8deMedKjzxbLEQHjnDVTEhjUHfCCihNqU8w5Ya8PyY8m3WsG-ihd7_WTdH2UrhkvCWXy7WPJvB3RPc39s1yAixOA5dTFYzouwmLD-YR20i76_5Y8ALeHmQU</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Xiao, Jianpeng</creator><creator>Liu, Tao</creator><creator>Lin, Hualiang</creator><creator>Zhu, Guanghu</creator><creator>Zeng, Weilin</creator><creator>Li, Xing</creator><creator>Zhang, Bing</creator><creator>Song, Tie</creator><creator>Deng, Aiping</creator><creator>Zhang, Meng</creator><creator>Zhong, Haojie</creator><creator>Lin, Shao</creator><creator>Rutherford, Shannon</creator><creator>Meng, Xiaojing</creator><creator>Zhang, Yonghui</creator><creator>Ma, Wenjun</creator><general>Elsevier B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180515</creationdate><title>Weather variables and the El Niño Southern Oscillation may drive the epidemics of dengue in Guangdong Province, China</title><author>Xiao, Jianpeng ; Liu, Tao ; Lin, Hualiang ; Zhu, Guanghu ; Zeng, Weilin ; Li, Xing ; Zhang, Bing ; Song, Tie ; Deng, Aiping ; Zhang, Meng ; Zhong, Haojie ; Lin, Shao ; Rutherford, Shannon ; Meng, Xiaojing ; Zhang, Yonghui ; Ma, Wenjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c371t-d0764688e489fdd2aae0673ab59906a5a0ef38cc719e1a70908119af8a45f40f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Climate variables</topic><topic>Dengue</topic><topic>El Niño</topic><topic>Wavelet analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xiao, Jianpeng</creatorcontrib><creatorcontrib>Liu, Tao</creatorcontrib><creatorcontrib>Lin, Hualiang</creatorcontrib><creatorcontrib>Zhu, Guanghu</creatorcontrib><creatorcontrib>Zeng, Weilin</creatorcontrib><creatorcontrib>Li, Xing</creatorcontrib><creatorcontrib>Zhang, Bing</creatorcontrib><creatorcontrib>Song, Tie</creatorcontrib><creatorcontrib>Deng, Aiping</creatorcontrib><creatorcontrib>Zhang, Meng</creatorcontrib><creatorcontrib>Zhong, Haojie</creatorcontrib><creatorcontrib>Lin, Shao</creatorcontrib><creatorcontrib>Rutherford, Shannon</creatorcontrib><creatorcontrib>Meng, Xiaojing</creatorcontrib><creatorcontrib>Zhang, Yonghui</creatorcontrib><creatorcontrib>Ma, Wenjun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xiao, Jianpeng</au><au>Liu, Tao</au><au>Lin, Hualiang</au><au>Zhu, Guanghu</au><au>Zeng, Weilin</au><au>Li, Xing</au><au>Zhang, Bing</au><au>Song, Tie</au><au>Deng, Aiping</au><au>Zhang, Meng</au><au>Zhong, Haojie</au><au>Lin, Shao</au><au>Rutherford, Shannon</au><au>Meng, Xiaojing</au><au>Zhang, Yonghui</au><au>Ma, Wenjun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Weather variables and the El Niño Southern Oscillation may drive the epidemics of dengue in Guangdong Province, China</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2018-05-15</date><risdate>2018</risdate><volume>624</volume><spage>926</spage><epage>934</epage><pages>926-934</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>To investigate the periodicity of dengue and the relationship between weather variables, El Niño Southern Oscillation (ENSO) and dengue incidence in Guangdong Province, China.
Guangdong monthly dengue incidence and weather data and El Niño index information for 1988 to 2015 were collected. Wavelet analysis was used to investigate the periodicity of dengue, and the coherence and time-lag phases between dengue and weather variables and ENSO. The Generalized Additive Model (GAM) approach was further employed to explore the dose-response relationship of those variables on dengue. Finally, random forest analysis was applied to measure the relative importance of the climate predictors.
Dengue in Guangdong has a dominant annual periodicity over the period 1988–2015. Mean minimum temperature, total precipitation, and mean relative humidity are positively related to dengue incidence for 2, 3, and 4months lag, respectively. ENSO in the previous 12months may have driven the dengue epidemics in 1995, 2002, 2006 and 2010 in Guangdong. GAM analysis indicates an approximate linear association for the temperature-dengue relationship, approximate logarithm curve for the humidity-dengue relationship, and an inverted U-shape association for the precipitation-dengue (the threshold of precipitation is 348mm per month) and ENSO-dengue relationships (the threshold of ENSO index is 0.6°C). The monthly mean minimum temperature in the previous two months was identified as the most important climate variable associated with dengue epidemics in Guangdong Province.
Our study suggests weather factors and ENSO are important predictors of dengue incidence. These findings provide useful evidence for early warning systems to help to respond to the global expansion of dengue fever.
[Display omitted]
•Dengue in Guangdong does not have an obvious multiyear periodicity.•Temperature, precipitation, relative humidity and ENSO are positively related to dengue incidence for different lag months.•ENSO in the previous year may drive dengue epidemics.•Monthly minimum temperature in the previous two months may be the most important climatic variable.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29275255</pmid><doi>10.1016/j.scitotenv.2017.12.200</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0048-9697 |
ispartof | The Science of the total environment, 2018-05, Vol.624, p.926-934 |
issn | 0048-9697 1879-1026 |
language | eng |
recordid | cdi_proquest_miscellaneous_1980103602 |
source | ScienceDirect Journals (5 years ago - present) |
subjects | Climate variables Dengue El Niño Wavelet analysis |
title | Weather variables and the El Niño Southern Oscillation may drive the epidemics of dengue in Guangdong Province, China |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T18%3A28%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Weather%20variables%20and%20the%20El%20Ni%C3%B1o%20Southern%20Oscillation%20may%20drive%20the%20epidemics%20of%20dengue%20in%20Guangdong%20Province,%20China&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Xiao,%20Jianpeng&rft.date=2018-05-15&rft.volume=624&rft.spage=926&rft.epage=934&rft.pages=926-934&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2017.12.200&rft_dat=%3Cproquest_cross%3E1980103602%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1980103602&rft_id=info:pmid/29275255&rft_els_id=S0048969717336331&rfr_iscdi=true |