Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance

Solar cells based on hybrid organic–inorganic metal halide perovskites are being developed to achieve high efficiency and stability. However, inevitably, there are defects in perovskite films, leading to poor device performance. Here, we employ an additive-engineering strategy to modify the grain bo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ACS applied materials & interfaces 2018-01, Vol.10 (2), p.1909-1916
Hauptverfasser: Liu, Cong, Huang, Zengqi, Hu, Xiaotian, Meng, Xiangchuan, Huang, Liqiang, Xiong, Jian, Tan, Licheng, Chen, Yiwang
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1916
container_issue 2
container_start_page 1909
container_title ACS applied materials & interfaces
container_volume 10
creator Liu, Cong
Huang, Zengqi
Hu, Xiaotian
Meng, Xiangchuan
Huang, Liqiang
Xiong, Jian
Tan, Licheng
Chen, Yiwang
description Solar cells based on hybrid organic–inorganic metal halide perovskites are being developed to achieve high efficiency and stability. However, inevitably, there are defects in perovskite films, leading to poor device performance. Here, we employ an additive-engineering strategy to modify the grain boundary (GB) defects and crystal lattice defects by introducing a strong electron acceptor of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into perovskite functional layer. Importantly, it has been found that F4TCNQ is filled in GBs and there is a significant reduction of metallic lead defects and iodide vacancies in the perovskite crystal lattice. The bulk heterojunction perovskite–F4TCNQ film exhibits superior electronic quality with improved charge separation and transfer, enhanced and balanced charge mobility, as well as suppressed recombination. As a result, the F4TCNQ doped perovskite device shows excellent device performance, especially the reproducible high fill factor (up to 80%) and negligible hysteresis effect.
doi_str_mv 10.1021/acsami.7b15031
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1979967522</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979967522</sourcerecordid><originalsourceid>FETCH-LOGICAL-a330t-d3033e9deb1633281c5ffeb491e29ee6ef5f8df86db858a807cc2790a19f616c3</originalsourceid><addsrcrecordid>eNp1kEtPAjEURhujEUS3Lk2XxgTsY15dKgKa4BvXk07nNhaZKbYzqP_eEpCdq94m5_ty70HolJIBJYxeSuVlZQZpQWPC6R7qUhFF_YzFbH83R1EHHXk_JyThjMSHqMMES2kYu6iZOGlqfG3bupTuB9_b0mijZGNsjVdG4nE0Gz4845nFL1C2CvANaFCNx1bjJ3B25T9MA_jVLqTDQ1gsPP4yzTsefavwgboJgZUJuQBr6ypZKzhGB1ouPJxs3x56G49mw9v-9HFyN7ya9iXnpOmXnHAOooSCJpyzjKpYaygiQYEJgAR0rLNSZ0lZZHEmM5IqxVJBJBU6oYniPXS-6V06-9mCb_LK-PVasgbb-pyKVIgkjRkL6GCDKme9d6DzpTNVMJJTkq9N5xvT-dZ0CJxtu9uignKH_6kNwMUGCMF8bltXh1P_a_sFjyeJBw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979967522</pqid></control><display><type>article</type><title>Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance</title><source>American Chemical Society</source><creator>Liu, Cong ; Huang, Zengqi ; Hu, Xiaotian ; Meng, Xiangchuan ; Huang, Liqiang ; Xiong, Jian ; Tan, Licheng ; Chen, Yiwang</creator><creatorcontrib>Liu, Cong ; Huang, Zengqi ; Hu, Xiaotian ; Meng, Xiangchuan ; Huang, Liqiang ; Xiong, Jian ; Tan, Licheng ; Chen, Yiwang</creatorcontrib><description>Solar cells based on hybrid organic–inorganic metal halide perovskites are being developed to achieve high efficiency and stability. However, inevitably, there are defects in perovskite films, leading to poor device performance. Here, we employ an additive-engineering strategy to modify the grain boundary (GB) defects and crystal lattice defects by introducing a strong electron acceptor of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into perovskite functional layer. Importantly, it has been found that F4TCNQ is filled in GBs and there is a significant reduction of metallic lead defects and iodide vacancies in the perovskite crystal lattice. The bulk heterojunction perovskite–F4TCNQ film exhibits superior electronic quality with improved charge separation and transfer, enhanced and balanced charge mobility, as well as suppressed recombination. As a result, the F4TCNQ doped perovskite device shows excellent device performance, especially the reproducible high fill factor (up to 80%) and negligible hysteresis effect.</description><identifier>ISSN: 1944-8244</identifier><identifier>EISSN: 1944-8252</identifier><identifier>DOI: 10.1021/acsami.7b15031</identifier><identifier>PMID: 29271205</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>ACS applied materials &amp; interfaces, 2018-01, Vol.10 (2), p.1909-1916</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a330t-d3033e9deb1633281c5ffeb491e29ee6ef5f8df86db858a807cc2790a19f616c3</citedby><cites>FETCH-LOGICAL-a330t-d3033e9deb1633281c5ffeb491e29ee6ef5f8df86db858a807cc2790a19f616c3</cites><orcidid>0000-0003-4709-7623</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acsami.7b15031$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acsami.7b15031$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>315,781,785,2766,27078,27926,27927,56740,56790</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29271205$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Huang, Zengqi</creatorcontrib><creatorcontrib>Hu, Xiaotian</creatorcontrib><creatorcontrib>Meng, Xiangchuan</creatorcontrib><creatorcontrib>Huang, Liqiang</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Tan, Licheng</creatorcontrib><creatorcontrib>Chen, Yiwang</creatorcontrib><title>Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance</title><title>ACS applied materials &amp; interfaces</title><addtitle>ACS Appl. Mater. Interfaces</addtitle><description>Solar cells based on hybrid organic–inorganic metal halide perovskites are being developed to achieve high efficiency and stability. However, inevitably, there are defects in perovskite films, leading to poor device performance. Here, we employ an additive-engineering strategy to modify the grain boundary (GB) defects and crystal lattice defects by introducing a strong electron acceptor of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into perovskite functional layer. Importantly, it has been found that F4TCNQ is filled in GBs and there is a significant reduction of metallic lead defects and iodide vacancies in the perovskite crystal lattice. The bulk heterojunction perovskite–F4TCNQ film exhibits superior electronic quality with improved charge separation and transfer, enhanced and balanced charge mobility, as well as suppressed recombination. As a result, the F4TCNQ doped perovskite device shows excellent device performance, especially the reproducible high fill factor (up to 80%) and negligible hysteresis effect.</description><issn>1944-8244</issn><issn>1944-8252</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kEtPAjEURhujEUS3Lk2XxgTsY15dKgKa4BvXk07nNhaZKbYzqP_eEpCdq94m5_ty70HolJIBJYxeSuVlZQZpQWPC6R7qUhFF_YzFbH83R1EHHXk_JyThjMSHqMMES2kYu6iZOGlqfG3bupTuB9_b0mijZGNsjVdG4nE0Gz4845nFL1C2CvANaFCNx1bjJ3B25T9MA_jVLqTDQ1gsPP4yzTsefavwgboJgZUJuQBr6ypZKzhGB1ouPJxs3x56G49mw9v-9HFyN7ya9iXnpOmXnHAOooSCJpyzjKpYaygiQYEJgAR0rLNSZ0lZZHEmM5IqxVJBJBU6oYniPXS-6V06-9mCb_LK-PVasgbb-pyKVIgkjRkL6GCDKme9d6DzpTNVMJJTkq9N5xvT-dZ0CJxtu9uignKH_6kNwMUGCMF8bltXh1P_a_sFjyeJBw</recordid><startdate>20180117</startdate><enddate>20180117</enddate><creator>Liu, Cong</creator><creator>Huang, Zengqi</creator><creator>Hu, Xiaotian</creator><creator>Meng, Xiangchuan</creator><creator>Huang, Liqiang</creator><creator>Xiong, Jian</creator><creator>Tan, Licheng</creator><creator>Chen, Yiwang</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4709-7623</orcidid></search><sort><creationdate>20180117</creationdate><title>Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance</title><author>Liu, Cong ; Huang, Zengqi ; Hu, Xiaotian ; Meng, Xiangchuan ; Huang, Liqiang ; Xiong, Jian ; Tan, Licheng ; Chen, Yiwang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a330t-d3033e9deb1633281c5ffeb491e29ee6ef5f8df86db858a807cc2790a19f616c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Cong</creatorcontrib><creatorcontrib>Huang, Zengqi</creatorcontrib><creatorcontrib>Hu, Xiaotian</creatorcontrib><creatorcontrib>Meng, Xiangchuan</creatorcontrib><creatorcontrib>Huang, Liqiang</creatorcontrib><creatorcontrib>Xiong, Jian</creatorcontrib><creatorcontrib>Tan, Licheng</creatorcontrib><creatorcontrib>Chen, Yiwang</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>ACS applied materials &amp; interfaces</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Cong</au><au>Huang, Zengqi</au><au>Hu, Xiaotian</au><au>Meng, Xiangchuan</au><au>Huang, Liqiang</au><au>Xiong, Jian</au><au>Tan, Licheng</au><au>Chen, Yiwang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance</atitle><jtitle>ACS applied materials &amp; interfaces</jtitle><addtitle>ACS Appl. Mater. Interfaces</addtitle><date>2018-01-17</date><risdate>2018</risdate><volume>10</volume><issue>2</issue><spage>1909</spage><epage>1916</epage><pages>1909-1916</pages><issn>1944-8244</issn><eissn>1944-8252</eissn><abstract>Solar cells based on hybrid organic–inorganic metal halide perovskites are being developed to achieve high efficiency and stability. However, inevitably, there are defects in perovskite films, leading to poor device performance. Here, we employ an additive-engineering strategy to modify the grain boundary (GB) defects and crystal lattice defects by introducing a strong electron acceptor of 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F4TCNQ) into perovskite functional layer. Importantly, it has been found that F4TCNQ is filled in GBs and there is a significant reduction of metallic lead defects and iodide vacancies in the perovskite crystal lattice. The bulk heterojunction perovskite–F4TCNQ film exhibits superior electronic quality with improved charge separation and transfer, enhanced and balanced charge mobility, as well as suppressed recombination. As a result, the F4TCNQ doped perovskite device shows excellent device performance, especially the reproducible high fill factor (up to 80%) and negligible hysteresis effect.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29271205</pmid><doi>10.1021/acsami.7b15031</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0003-4709-7623</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1944-8244
ispartof ACS applied materials & interfaces, 2018-01, Vol.10 (2), p.1909-1916
issn 1944-8244
1944-8252
language eng
recordid cdi_proquest_miscellaneous_1979967522
source American Chemical Society
title Grain Boundary Modification via F4TCNQ To Reduce Defects of Perovskite Solar Cells with Excellent Device Performance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-17T22%3A05%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Grain%20Boundary%20Modification%20via%20F4TCNQ%20To%20Reduce%20Defects%20of%20Perovskite%20Solar%20Cells%20with%20Excellent%20Device%20Performance&rft.jtitle=ACS%20applied%20materials%20&%20interfaces&rft.au=Liu,%20Cong&rft.date=2018-01-17&rft.volume=10&rft.issue=2&rft.spage=1909&rft.epage=1916&rft.pages=1909-1916&rft.issn=1944-8244&rft.eissn=1944-8252&rft_id=info:doi/10.1021/acsami.7b15031&rft_dat=%3Cproquest_cross%3E1979967522%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979967522&rft_id=info:pmid/29271205&rfr_iscdi=true