Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice

Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodeve...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transgenic research 2018-02, Vol.27 (1), p.1-13
Hauptverfasser: Smirnov, Alexander V., Kontsevaya, Galina V., Feofanova, Natalia A., Anisimova, Margarita V., Serova, Irina A., Gerlinskaya, Lyudmila A., Battulin, Nariman R., Moshkin, Mikhail P., Serov, Oleg L.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 13
container_issue 1
container_start_page 1
container_title Transgenic research
container_volume 27
creator Smirnov, Alexander V.
Kontsevaya, Galina V.
Feofanova, Natalia A.
Anisimova, Margarita V.
Serova, Irina A.
Gerlinskaya, Lyudmila A.
Battulin, Nariman R.
Moshkin, Mikhail P.
Serov, Oleg L.
description Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte–macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.
doi_str_mv 10.1007/s11248-017-0053-y
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1979499999</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979499999</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-cb14ee567d2b9bc62ea1c9768ad1f215c44508e6ad2debd7797bb129928bfe1c3</originalsourceid><addsrcrecordid>eNp1kUtrGzEURkVpiJ3HD-imCLrpRomkmdFjWUyaBALdNGuh0dyxxw9pKmlK_O8jx24pgWoj0D3fpwsHoU-M3jBK5W1ijNeKUCYJpU1F9h_QnDWyIroS6iOaUy04UYrpGbpIaU1pSanqHM245qIWUs_R72cPLyO4DB0eV-BD3o-Dw9D35S3h0GOLc7Q-LcEDHnyGZbR5CB47O6XBL8t844PbhCkf6LwCDL4LBQ9Twovgs3V58KTBpwa8GxxcobPebhNcn-5L9Pz97ufigTz9uH9cfHsirpI8E9eyGqARsuOtbp3gYJnTUijbsZ6zxtV1QxUI2_EO2k5KLduWca25antgrrpEX4-9Ywy_JkjZ7IbkYLu1Hsp-hmmpa304Bf3yDl2HKfqy3RtFRaVkUyh2pFwMKUXozRiHnY17w6g5SDFHKaZIMQcpZl8yn0_NU7uD7m_ij4UC8COQysgvIf7z9X9bXwHUBpmH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1979063875</pqid></control><display><type>article</type><title>Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice</title><source>MEDLINE</source><source>SpringerLink Journals - AutoHoldings</source><creator>Smirnov, Alexander V. ; Kontsevaya, Galina V. ; Feofanova, Natalia A. ; Anisimova, Margarita V. ; Serova, Irina A. ; Gerlinskaya, Lyudmila A. ; Battulin, Nariman R. ; Moshkin, Mikhail P. ; Serov, Oleg L.</creator><creatorcontrib>Smirnov, Alexander V. ; Kontsevaya, Galina V. ; Feofanova, Natalia A. ; Anisimova, Margarita V. ; Serova, Irina A. ; Gerlinskaya, Lyudmila A. ; Battulin, Nariman R. ; Moshkin, Mikhail P. ; Serov, Oleg L.</creatorcontrib><description>Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte–macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-017-0053-y</identifier><identifier>PMID: 29264679</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Animal Genetics and Genomics ; Animals ; Auditory defects ; Axons ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Blood flow ; Blood pressure ; Body Composition - genetics ; Body Composition - physiology ; Body mass ; CNTN5 gene ; Coding ; Codons ; Colony-stimulating factor ; Contactin ; Contactins - genetics ; Drinking - genetics ; Eating - genetics ; Exons ; Female ; Gene Expression Regulation ; Genetic Engineering ; Granulocyte-macrophage colony-stimulating factor ; Granulocyte-Macrophage Colony-Stimulating Factor - genetics ; Heart rate ; Humans ; Hypertension ; Hypertension - genetics ; Integration ; Life Sciences ; Macrophages ; Male ; Membrane proteins ; Mice ; Mice, Knockout ; Mice, Transgenic - genetics ; Microinjection ; Molecular Medicine ; Neurodevelopmental disorders ; Obesity ; Original Paper ; Phenotype ; Plant Genetics and Genomics ; Polymerase Chain Reaction ; Population genetics ; Population studies ; Proteins ; Reverse transcription ; Rodents ; Splicing ; Transgenes ; Transgenic mice ; Transgenics</subject><ispartof>Transgenic research, 2018-02, Vol.27 (1), p.1-13</ispartof><rights>Springer International Publishing AG, part of Springer Nature 2017</rights><rights>Transgenic Research is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-cb14ee567d2b9bc62ea1c9768ad1f215c44508e6ad2debd7797bb129928bfe1c3</citedby><cites>FETCH-LOGICAL-c372t-cb14ee567d2b9bc62ea1c9768ad1f215c44508e6ad2debd7797bb129928bfe1c3</cites><orcidid>0000-0001-5152-9914</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11248-017-0053-y$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11248-017-0053-y$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29264679$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Smirnov, Alexander V.</creatorcontrib><creatorcontrib>Kontsevaya, Galina V.</creatorcontrib><creatorcontrib>Feofanova, Natalia A.</creatorcontrib><creatorcontrib>Anisimova, Margarita V.</creatorcontrib><creatorcontrib>Serova, Irina A.</creatorcontrib><creatorcontrib>Gerlinskaya, Lyudmila A.</creatorcontrib><creatorcontrib>Battulin, Nariman R.</creatorcontrib><creatorcontrib>Moshkin, Mikhail P.</creatorcontrib><creatorcontrib>Serov, Oleg L.</creatorcontrib><title>Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte–macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.</description><subject>Animal Genetics and Genomics</subject><subject>Animals</subject><subject>Auditory defects</subject><subject>Axons</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Blood flow</subject><subject>Blood pressure</subject><subject>Body Composition - genetics</subject><subject>Body Composition - physiology</subject><subject>Body mass</subject><subject>CNTN5 gene</subject><subject>Coding</subject><subject>Codons</subject><subject>Colony-stimulating factor</subject><subject>Contactin</subject><subject>Contactins - genetics</subject><subject>Drinking - genetics</subject><subject>Eating - genetics</subject><subject>Exons</subject><subject>Female</subject><subject>Gene Expression Regulation</subject><subject>Genetic Engineering</subject><subject>Granulocyte-macrophage colony-stimulating factor</subject><subject>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</subject><subject>Heart rate</subject><subject>Humans</subject><subject>Hypertension</subject><subject>Hypertension - genetics</subject><subject>Integration</subject><subject>Life Sciences</subject><subject>Macrophages</subject><subject>Male</subject><subject>Membrane proteins</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Mice, Transgenic - genetics</subject><subject>Microinjection</subject><subject>Molecular Medicine</subject><subject>Neurodevelopmental disorders</subject><subject>Obesity</subject><subject>Original Paper</subject><subject>Phenotype</subject><subject>Plant Genetics and Genomics</subject><subject>Polymerase Chain Reaction</subject><subject>Population genetics</subject><subject>Population studies</subject><subject>Proteins</subject><subject>Reverse transcription</subject><subject>Rodents</subject><subject>Splicing</subject><subject>Transgenes</subject><subject>Transgenic mice</subject><subject>Transgenics</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kUtrGzEURkVpiJ3HD-imCLrpRomkmdFjWUyaBALdNGuh0dyxxw9pKmlK_O8jx24pgWoj0D3fpwsHoU-M3jBK5W1ijNeKUCYJpU1F9h_QnDWyIroS6iOaUy04UYrpGbpIaU1pSanqHM245qIWUs_R72cPLyO4DB0eV-BD3o-Dw9D35S3h0GOLc7Q-LcEDHnyGZbR5CB47O6XBL8t844PbhCkf6LwCDL4LBQ9Twovgs3V58KTBpwa8GxxcobPebhNcn-5L9Pz97ufigTz9uH9cfHsirpI8E9eyGqARsuOtbp3gYJnTUijbsZ6zxtV1QxUI2_EO2k5KLduWca25antgrrpEX4-9Ywy_JkjZ7IbkYLu1Hsp-hmmpa304Bf3yDl2HKfqy3RtFRaVkUyh2pFwMKUXozRiHnY17w6g5SDFHKaZIMQcpZl8yn0_NU7uD7m_ij4UC8COQysgvIf7z9X9bXwHUBpmH</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Smirnov, Alexander V.</creator><creator>Kontsevaya, Galina V.</creator><creator>Feofanova, Natalia A.</creator><creator>Anisimova, Margarita V.</creator><creator>Serova, Irina A.</creator><creator>Gerlinskaya, Lyudmila A.</creator><creator>Battulin, Nariman R.</creator><creator>Moshkin, Mikhail P.</creator><creator>Serov, Oleg L.</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-5152-9914</orcidid></search><sort><creationdate>20180201</creationdate><title>Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice</title><author>Smirnov, Alexander V. ; Kontsevaya, Galina V. ; Feofanova, Natalia A. ; Anisimova, Margarita V. ; Serova, Irina A. ; Gerlinskaya, Lyudmila A. ; Battulin, Nariman R. ; Moshkin, Mikhail P. ; Serov, Oleg L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-cb14ee567d2b9bc62ea1c9768ad1f215c44508e6ad2debd7797bb129928bfe1c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animal Genetics and Genomics</topic><topic>Animals</topic><topic>Auditory defects</topic><topic>Axons</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Blood flow</topic><topic>Blood pressure</topic><topic>Body Composition - genetics</topic><topic>Body Composition - physiology</topic><topic>Body mass</topic><topic>CNTN5 gene</topic><topic>Coding</topic><topic>Codons</topic><topic>Colony-stimulating factor</topic><topic>Contactin</topic><topic>Contactins - genetics</topic><topic>Drinking - genetics</topic><topic>Eating - genetics</topic><topic>Exons</topic><topic>Female</topic><topic>Gene Expression Regulation</topic><topic>Genetic Engineering</topic><topic>Granulocyte-macrophage colony-stimulating factor</topic><topic>Granulocyte-Macrophage Colony-Stimulating Factor - genetics</topic><topic>Heart rate</topic><topic>Humans</topic><topic>Hypertension</topic><topic>Hypertension - genetics</topic><topic>Integration</topic><topic>Life Sciences</topic><topic>Macrophages</topic><topic>Male</topic><topic>Membrane proteins</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Mice, Transgenic - genetics</topic><topic>Microinjection</topic><topic>Molecular Medicine</topic><topic>Neurodevelopmental disorders</topic><topic>Obesity</topic><topic>Original Paper</topic><topic>Phenotype</topic><topic>Plant Genetics and Genomics</topic><topic>Polymerase Chain Reaction</topic><topic>Population genetics</topic><topic>Population studies</topic><topic>Proteins</topic><topic>Reverse transcription</topic><topic>Rodents</topic><topic>Splicing</topic><topic>Transgenes</topic><topic>Transgenic mice</topic><topic>Transgenics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Smirnov, Alexander V.</creatorcontrib><creatorcontrib>Kontsevaya, Galina V.</creatorcontrib><creatorcontrib>Feofanova, Natalia A.</creatorcontrib><creatorcontrib>Anisimova, Margarita V.</creatorcontrib><creatorcontrib>Serova, Irina A.</creatorcontrib><creatorcontrib>Gerlinskaya, Lyudmila A.</creatorcontrib><creatorcontrib>Battulin, Nariman R.</creatorcontrib><creatorcontrib>Moshkin, Mikhail P.</creatorcontrib><creatorcontrib>Serov, Oleg L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Smirnov, Alexander V.</au><au>Kontsevaya, Galina V.</au><au>Feofanova, Natalia A.</au><au>Anisimova, Margarita V.</au><au>Serova, Irina A.</au><au>Gerlinskaya, Lyudmila A.</au><au>Battulin, Nariman R.</au><au>Moshkin, Mikhail P.</au><au>Serov, Oleg L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>27</volume><issue>1</issue><spage>1</spage><epage>13</epage><pages>1-13</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>Contactins (Cntn1-6) are a family of neuronal membrane proteins expressed in the brain. They are required for establishing cell-to-cell contacts between neurons and for the growth and maturation of the axons. In humans, structural genomic variations in the Contactin genes are implicated in neurodevelopmental disorders. In addition, population genetic studies associate Contactins loci with obesity and hypertension. Cntn5 knockout mice were first described in 2003, but showed no gross physiological or behavioral abnormalities (just minor auditory defects). We report a novel Cntn5 knockout mouse line generated by a random transgene integration as an outcome of pronuclear microinjection. Investigation of the transgene integration site revealed that the 6Kbp transgene construct coding for the human granulocyte–macrophage colony-stimulating factor (hGMCSF) replaced 170 Kbp of the Cntn5 gene, including four exons. Reverse transcription PCR analysis of the Cntn5 transcripts in the wild-type and transgenic mouse lines showed that splicing of the transgene leads to a set of chimeric hGMCSF-Cntn5 transcript variants, none of which encode functional Cntn5 protein due to introduction of stop codons. Although Cntn5 knockout animals displayed no abnormalities in behavior, we noted that they were leaner, with less body mass and fat percentage than wild-type animals. Their cardiovascular parameters (heart rate, blood pressure and blood flow speed) were elevated compared to controls. These findings link Cntn5 deficiency to obesity and hypertension.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><pmid>29264679</pmid><doi>10.1007/s11248-017-0053-y</doi><tpages>13</tpages><orcidid>https://orcid.org/0000-0001-5152-9914</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0962-8819
ispartof Transgenic research, 2018-02, Vol.27 (1), p.1-13
issn 0962-8819
1573-9368
language eng
recordid cdi_proquest_miscellaneous_1979499999
source MEDLINE; SpringerLink Journals - AutoHoldings
subjects Animal Genetics and Genomics
Animals
Auditory defects
Axons
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Blood flow
Blood pressure
Body Composition - genetics
Body Composition - physiology
Body mass
CNTN5 gene
Coding
Codons
Colony-stimulating factor
Contactin
Contactins - genetics
Drinking - genetics
Eating - genetics
Exons
Female
Gene Expression Regulation
Genetic Engineering
Granulocyte-macrophage colony-stimulating factor
Granulocyte-Macrophage Colony-Stimulating Factor - genetics
Heart rate
Humans
Hypertension
Hypertension - genetics
Integration
Life Sciences
Macrophages
Male
Membrane proteins
Mice
Mice, Knockout
Mice, Transgenic - genetics
Microinjection
Molecular Medicine
Neurodevelopmental disorders
Obesity
Original Paper
Phenotype
Plant Genetics and Genomics
Polymerase Chain Reaction
Population genetics
Population studies
Proteins
Reverse transcription
Rodents
Splicing
Transgenes
Transgenic mice
Transgenics
title Unexpected phenotypic effects of a transgene integration causing a knockout of the endogenous Contactin-5 gene in mice
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A45%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unexpected%20phenotypic%20effects%20of%20a%20transgene%20integration%20causing%20a%20knockout%20of%20the%20endogenous%20Contactin-5%20gene%20in%20mice&rft.jtitle=Transgenic%20research&rft.au=Smirnov,%20Alexander%20V.&rft.date=2018-02-01&rft.volume=27&rft.issue=1&rft.spage=1&rft.epage=13&rft.pages=1-13&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-017-0053-y&rft_dat=%3Cproquest_cross%3E1979499999%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1979063875&rft_id=info:pmid/29264679&rfr_iscdi=true