Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials

Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Angewandte Chemie International Edition 2018-01, Vol.57 (5), p.1199-1203
Hauptverfasser: Muñoz‐Batista, Mario J., Motta Meira, Debora, Colón, Gerardo, Kubacka, Anna, Fernández‐García, Marcos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1203
container_issue 5
container_start_page 1199
container_title Angewandte Chemie International Edition
container_volume 57
creator Muñoz‐Batista, Mario J.
Motta Meira, Debora
Colón, Gerardo
Kubacka, Anna
Fernández‐García, Marcos
description Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables.
doi_str_mv 10.1002/anie.201709552
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1979492971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979492971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0E4ntlRJZYWFJsJ77EI0SFIhXoAHPkOE4xSm2wE6Fu_AR-I78EV-VDYmG6073PvTrdi9ARJSNKCDuT1ugRIzQngnO2gXYpZzRJ8zzdjH2WpklecLqD9kJ4inxRENhGO0ww4ABiF_nZowz64-29dLaXqsdjOzdWa2_sHBuLb5x1UcXSNvjCLHQvu84oXA5xeGtwuRKVjNNl6ANunceTZePdXFs8e3S9W2t9XLmRfXSVXThAW20s-vCr7qOHy_F9OUmmd1fX5fk0URklLGkKnubAhKzzrFWcEtkqUtQc6lo3GVAuG8IUl9BAU7dUSiAtqBaAZgAp6HQfna59n717GXToq4UJSnedtNoNoaIiF5lgIqcRPfmDPrnB23hdpAoBhNA0i9RoTSnvQvC6rZ69WUi_rCipVmlUqzSqnzTiwvGX7VAvdPODf78_AmINvJpOL_-xq85vr8e_5p8gjprH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989600134</pqid></control><display><type>article</type><title>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</title><source>Access via Wiley Online Library</source><creator>Muñoz‐Batista, Mario J. ; Motta Meira, Debora ; Colón, Gerardo ; Kubacka, Anna ; Fernández‐García, Marcos</creator><creatorcontrib>Muñoz‐Batista, Mario J. ; Motta Meira, Debora ; Colón, Gerardo ; Kubacka, Anna ; Fernández‐García, Marcos</creatorcontrib><description>Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201709552</identifier><identifier>PMID: 29265669</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Bimetals ; bio-alcohol reforming ; Catalysis ; Catalysts ; Computer applications ; Computer simulation ; Copper ; Experimental methods ; Hydrogen production ; light–matter interactions ; Nickel ; Noble metals ; operando X-ray absorption ; Oxidation ; Photocatalysis ; Spectroscopy ; Titanium dioxide ; Valence ; X-ray absorption spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2018-01, Vol.57 (5), p.1199-1203</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</citedby><cites>FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201709552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201709552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29265669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz‐Batista, Mario J.</creatorcontrib><creatorcontrib>Motta Meira, Debora</creatorcontrib><creatorcontrib>Colón, Gerardo</creatorcontrib><creatorcontrib>Kubacka, Anna</creatorcontrib><creatorcontrib>Fernández‐García, Marcos</creatorcontrib><title>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables.</description><subject>Absorption spectroscopy</subject><subject>Bimetals</subject><subject>bio-alcohol reforming</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Experimental methods</subject><subject>Hydrogen production</subject><subject>light–matter interactions</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>operando X-ray absorption</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Spectroscopy</subject><subject>Titanium dioxide</subject><subject>Valence</subject><subject>X-ray absorption spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhi0E4ntlRJZYWFJsJ77EI0SFIhXoAHPkOE4xSm2wE6Fu_AR-I78EV-VDYmG6073PvTrdi9ARJSNKCDuT1ugRIzQngnO2gXYpZzRJ8zzdjH2WpklecLqD9kJ4inxRENhGO0ww4ABiF_nZowz64-29dLaXqsdjOzdWa2_sHBuLb5x1UcXSNvjCLHQvu84oXA5xeGtwuRKVjNNl6ANunceTZePdXFs8e3S9W2t9XLmRfXSVXThAW20s-vCr7qOHy_F9OUmmd1fX5fk0URklLGkKnubAhKzzrFWcEtkqUtQc6lo3GVAuG8IUl9BAU7dUSiAtqBaAZgAp6HQfna59n717GXToq4UJSnedtNoNoaIiF5lgIqcRPfmDPrnB23hdpAoBhNA0i9RoTSnvQvC6rZ69WUi_rCipVmlUqzSqnzTiwvGX7VAvdPODf78_AmINvJpOL_-xq85vr8e_5p8gjprH</recordid><startdate>20180126</startdate><enddate>20180126</enddate><creator>Muñoz‐Batista, Mario J.</creator><creator>Motta Meira, Debora</creator><creator>Colón, Gerardo</creator><creator>Kubacka, Anna</creator><creator>Fernández‐García, Marcos</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20180126</creationdate><title>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</title><author>Muñoz‐Batista, Mario J. ; Motta Meira, Debora ; Colón, Gerardo ; Kubacka, Anna ; Fernández‐García, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectroscopy</topic><topic>Bimetals</topic><topic>bio-alcohol reforming</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Experimental methods</topic><topic>Hydrogen production</topic><topic>light–matter interactions</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>operando X-ray absorption</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Spectroscopy</topic><topic>Titanium dioxide</topic><topic>Valence</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz‐Batista, Mario J.</creatorcontrib><creatorcontrib>Motta Meira, Debora</creatorcontrib><creatorcontrib>Colón, Gerardo</creatorcontrib><creatorcontrib>Kubacka, Anna</creatorcontrib><creatorcontrib>Fernández‐García, Marcos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz‐Batista, Mario J.</au><au>Motta Meira, Debora</au><au>Colón, Gerardo</au><au>Kubacka, Anna</au><au>Fernández‐García, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-01-26</date><risdate>2018</risdate><volume>57</volume><issue>5</issue><spage>1199</spage><epage>1203</epage><pages>1199-1203</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29265669</pmid><doi>10.1002/anie.201709552</doi><tpages>5</tpages><edition>International ed. in English</edition></addata></record>
fulltext fulltext
identifier ISSN: 1433-7851
ispartof Angewandte Chemie International Edition, 2018-01, Vol.57 (5), p.1199-1203
issn 1433-7851
1521-3773
language eng
recordid cdi_proquest_miscellaneous_1979492971
source Access via Wiley Online Library
subjects Absorption spectroscopy
Bimetals
bio-alcohol reforming
Catalysis
Catalysts
Computer applications
Computer simulation
Copper
Experimental methods
Hydrogen production
light–matter interactions
Nickel
Noble metals
operando X-ray absorption
Oxidation
Photocatalysis
Spectroscopy
Titanium dioxide
Valence
X-ray absorption spectroscopy
title Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%E2%80%90Contact%20Engineering%20in%20Mono%E2%80%90%20and%20Bimetallic%20Cu%E2%80%90Ni%20Co%E2%80%90catalysts%20for%20Hydrogen%20Photocatalytic%20Materials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Mu%C3%B1oz%E2%80%90Batista,%20Mario%20J.&rft.date=2018-01-26&rft.volume=57&rft.issue=5&rft.spage=1199&rft.epage=1203&rft.pages=1199-1203&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201709552&rft_dat=%3Cproquest_cross%3E1979492971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989600134&rft_id=info:pmid/29265669&rfr_iscdi=true