Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials
Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study the...
Gespeichert in:
Veröffentlicht in: | Angewandte Chemie International Edition 2018-01, Vol.57 (5), p.1199-1203 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1203 |
---|---|
container_issue | 5 |
container_start_page | 1199 |
container_title | Angewandte Chemie International Edition |
container_volume | 57 |
creator | Muñoz‐Batista, Mario J. Motta Meira, Debora Colón, Gerardo Kubacka, Anna Fernández‐García, Marcos |
description | Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials.
A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables. |
doi_str_mv | 10.1002/anie.201709552 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1979492971</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1979492971</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</originalsourceid><addsrcrecordid>eNqFkT1PwzAQhi0E4ntlRJZYWFJsJ77EI0SFIhXoAHPkOE4xSm2wE6Fu_AR-I78EV-VDYmG6073PvTrdi9ARJSNKCDuT1ugRIzQngnO2gXYpZzRJ8zzdjH2WpklecLqD9kJ4inxRENhGO0ww4ABiF_nZowz64-29dLaXqsdjOzdWa2_sHBuLb5x1UcXSNvjCLHQvu84oXA5xeGtwuRKVjNNl6ANunceTZePdXFs8e3S9W2t9XLmRfXSVXThAW20s-vCr7qOHy_F9OUmmd1fX5fk0URklLGkKnubAhKzzrFWcEtkqUtQc6lo3GVAuG8IUl9BAU7dUSiAtqBaAZgAp6HQfna59n717GXToq4UJSnedtNoNoaIiF5lgIqcRPfmDPrnB23hdpAoBhNA0i9RoTSnvQvC6rZ69WUi_rCipVmlUqzSqnzTiwvGX7VAvdPODf78_AmINvJpOL_-xq85vr8e_5p8gjprH</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1989600134</pqid></control><display><type>article</type><title>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</title><source>Access via Wiley Online Library</source><creator>Muñoz‐Batista, Mario J. ; Motta Meira, Debora ; Colón, Gerardo ; Kubacka, Anna ; Fernández‐García, Marcos</creator><creatorcontrib>Muñoz‐Batista, Mario J. ; Motta Meira, Debora ; Colón, Gerardo ; Kubacka, Anna ; Fernández‐García, Marcos</creatorcontrib><description>Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials.
A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables.</description><edition>International ed. in English</edition><identifier>ISSN: 1433-7851</identifier><identifier>EISSN: 1521-3773</identifier><identifier>DOI: 10.1002/anie.201709552</identifier><identifier>PMID: 29265669</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Absorption spectroscopy ; Bimetals ; bio-alcohol reforming ; Catalysis ; Catalysts ; Computer applications ; Computer simulation ; Copper ; Experimental methods ; Hydrogen production ; light–matter interactions ; Nickel ; Noble metals ; operando X-ray absorption ; Oxidation ; Photocatalysis ; Spectroscopy ; Titanium dioxide ; Valence ; X-ray absorption spectroscopy</subject><ispartof>Angewandte Chemie International Edition, 2018-01, Vol.57 (5), p.1199-1203</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</citedby><cites>FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fanie.201709552$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fanie.201709552$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29265669$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Muñoz‐Batista, Mario J.</creatorcontrib><creatorcontrib>Motta Meira, Debora</creatorcontrib><creatorcontrib>Colón, Gerardo</creatorcontrib><creatorcontrib>Kubacka, Anna</creatorcontrib><creatorcontrib>Fernández‐García, Marcos</creatorcontrib><title>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</title><title>Angewandte Chemie International Edition</title><addtitle>Angew Chem Int Ed Engl</addtitle><description>Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials.
A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables.</description><subject>Absorption spectroscopy</subject><subject>Bimetals</subject><subject>bio-alcohol reforming</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Copper</subject><subject>Experimental methods</subject><subject>Hydrogen production</subject><subject>light–matter interactions</subject><subject>Nickel</subject><subject>Noble metals</subject><subject>operando X-ray absorption</subject><subject>Oxidation</subject><subject>Photocatalysis</subject><subject>Spectroscopy</subject><subject>Titanium dioxide</subject><subject>Valence</subject><subject>X-ray absorption spectroscopy</subject><issn>1433-7851</issn><issn>1521-3773</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkT1PwzAQhi0E4ntlRJZYWFJsJ77EI0SFIhXoAHPkOE4xSm2wE6Fu_AR-I78EV-VDYmG6073PvTrdi9ARJSNKCDuT1ugRIzQngnO2gXYpZzRJ8zzdjH2WpklecLqD9kJ4inxRENhGO0ww4ABiF_nZowz64-29dLaXqsdjOzdWa2_sHBuLb5x1UcXSNvjCLHQvu84oXA5xeGtwuRKVjNNl6ANunceTZePdXFs8e3S9W2t9XLmRfXSVXThAW20s-vCr7qOHy_F9OUmmd1fX5fk0URklLGkKnubAhKzzrFWcEtkqUtQc6lo3GVAuG8IUl9BAU7dUSiAtqBaAZgAp6HQfna59n717GXToq4UJSnedtNoNoaIiF5lgIqcRPfmDPrnB23hdpAoBhNA0i9RoTSnvQvC6rZ69WUi_rCipVmlUqzSqnzTiwvGX7VAvdPODf78_AmINvJpOL_-xq85vr8e_5p8gjprH</recordid><startdate>20180126</startdate><enddate>20180126</enddate><creator>Muñoz‐Batista, Mario J.</creator><creator>Motta Meira, Debora</creator><creator>Colón, Gerardo</creator><creator>Kubacka, Anna</creator><creator>Fernández‐García, Marcos</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>K9.</scope><scope>7X8</scope></search><sort><creationdate>20180126</creationdate><title>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</title><author>Muñoz‐Batista, Mario J. ; Motta Meira, Debora ; Colón, Gerardo ; Kubacka, Anna ; Fernández‐García, Marcos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4102-d8537629ab74fc510afc08b56bbed4615ad02c5a6d6dbf1aa60f6cf66146636e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption spectroscopy</topic><topic>Bimetals</topic><topic>bio-alcohol reforming</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Copper</topic><topic>Experimental methods</topic><topic>Hydrogen production</topic><topic>light–matter interactions</topic><topic>Nickel</topic><topic>Noble metals</topic><topic>operando X-ray absorption</topic><topic>Oxidation</topic><topic>Photocatalysis</topic><topic>Spectroscopy</topic><topic>Titanium dioxide</topic><topic>Valence</topic><topic>X-ray absorption spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Muñoz‐Batista, Mario J.</creatorcontrib><creatorcontrib>Motta Meira, Debora</creatorcontrib><creatorcontrib>Colón, Gerardo</creatorcontrib><creatorcontrib>Kubacka, Anna</creatorcontrib><creatorcontrib>Fernández‐García, Marcos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>MEDLINE - Academic</collection><jtitle>Angewandte Chemie International Edition</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Muñoz‐Batista, Mario J.</au><au>Motta Meira, Debora</au><au>Colón, Gerardo</au><au>Kubacka, Anna</au><au>Fernández‐García, Marcos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials</atitle><jtitle>Angewandte Chemie International Edition</jtitle><addtitle>Angew Chem Int Ed Engl</addtitle><date>2018-01-26</date><risdate>2018</risdate><volume>57</volume><issue>5</issue><spage>1199</spage><epage>1203</epage><pages>1199-1203</pages><issn>1433-7851</issn><eissn>1521-3773</eissn><abstract>Understanding how a photocatalyst modulates its oxidation state, size, and structure during a photocatalytic reaction under operando conditions is strongly limited by the mismatch between (catalyst) volume sampled by light and, to date, the physicochemical techniques and probes employed to study them. A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) of the light‐matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni and bimetallic CuNi catalysts for hydrogen production from renewables was carried out. The combined information unveils an unexpected key catalytic role involving the phase contact between the reduced and oxidized non‐noble metal phases in all catalysts and, additionally, reveals the source of the synergistic Cu‐Ni interaction in the bimetallic material. The experimental method is applicable to operando studies of a wide variety of photocatalytic materials.
A synchrotron micro‐beam X‐ray absorption spectroscopy study together with the computational simulation and analysis (at the X‐ray cell) was carried out for the light–matter interaction occurring in powdered TiO2‐based monometallic Cu, Ni, and bimetallic CuNi catalysts for photocatalytic hydrogen production from renewables.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29265669</pmid><doi>10.1002/anie.201709552</doi><tpages>5</tpages><edition>International ed. in English</edition></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1433-7851 |
ispartof | Angewandte Chemie International Edition, 2018-01, Vol.57 (5), p.1199-1203 |
issn | 1433-7851 1521-3773 |
language | eng |
recordid | cdi_proquest_miscellaneous_1979492971 |
source | Access via Wiley Online Library |
subjects | Absorption spectroscopy Bimetals bio-alcohol reforming Catalysis Catalysts Computer applications Computer simulation Copper Experimental methods Hydrogen production light–matter interactions Nickel Noble metals operando X-ray absorption Oxidation Photocatalysis Spectroscopy Titanium dioxide Valence X-ray absorption spectroscopy |
title | Phase‐Contact Engineering in Mono‐ and Bimetallic Cu‐Ni Co‐catalysts for Hydrogen Photocatalytic Materials |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A49%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phase%E2%80%90Contact%20Engineering%20in%20Mono%E2%80%90%20and%20Bimetallic%20Cu%E2%80%90Ni%20Co%E2%80%90catalysts%20for%20Hydrogen%20Photocatalytic%20Materials&rft.jtitle=Angewandte%20Chemie%20International%20Edition&rft.au=Mu%C3%B1oz%E2%80%90Batista,%20Mario%20J.&rft.date=2018-01-26&rft.volume=57&rft.issue=5&rft.spage=1199&rft.epage=1203&rft.pages=1199-1203&rft.issn=1433-7851&rft.eissn=1521-3773&rft_id=info:doi/10.1002/anie.201709552&rft_dat=%3Cproquest_cross%3E1979492971%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1989600134&rft_id=info:pmid/29265669&rfr_iscdi=true |