A new method to quantify surface urban heat island intensity

Reliable quantification of urban heat island (UHI) can contribute to the effective evaluation of potential heat risk. Traditional methods for the quantification of UHI intensity (UHII) using pairs-measurements are sensitive to the choice of stations or grids. In order to get rid of the limitation of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Science of the total environment 2018-05, Vol.624, p.262-272
Hauptverfasser: Li, Huidong, Zhou, Yuyu, Li, Xiaoma, Meng, Lin, Wang, Xun, Wu, Sha, Sodoudi, Sahar
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 272
container_issue
container_start_page 262
container_title The Science of the total environment
container_volume 624
creator Li, Huidong
Zhou, Yuyu
Li, Xiaoma
Meng, Lin
Wang, Xun
Wu, Sha
Sodoudi, Sahar
description Reliable quantification of urban heat island (UHI) can contribute to the effective evaluation of potential heat risk. Traditional methods for the quantification of UHI intensity (UHII) using pairs-measurements are sensitive to the choice of stations or grids. In order to get rid of the limitation of urban/rural divisions, this paper proposes a new approach to quantify surface UHII (SUHII) using the relationship between MODIS land surface temperature (LST) and impervious surface areas (ISA). Given the footprint of LST measurement, the ISA was regionalized to include the information of neighborhood pixels using a Kernel Density Estimation (KDE) method. Considering the footprint improves the LST-ISA relationship. The LST shows highly positive correlation with the KDE regionalized ISA (ISAKDE). The linear functions of LST are well fitted by the ISAKDE in both annual and daily scales for the city of Berlin. The slope of the linear function represents the increase in LST from the natural surface in rural regions to the impervious surface in urban regions, and is defined as SUHII in this study. The calculated SUHII show high values in summer and during the day than in winter and at night. The new method is also verified using finer resolution Landset data, and the results further prove its reliability. [Display omitted] •Quantifying surface urban heat island intensity using the relationship between LST and Impervious Surface Areas.•The impervious surface areas was regionalized within the footprint of remote sensing observation using a Kernel Density Estimation method.•Linear functions of LST were well fitted using the regionalized impervious surface areas.•Slope of the linear function of LST was defined as the surface urban heat island intensity.
doi_str_mv 10.1016/j.scitotenv.2017.11.360
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1978719215</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0048969717334186</els_id><sourcerecordid>1978719215</sourcerecordid><originalsourceid>FETCH-LOGICAL-c486t-d18190eac1efa1d26973cea49faf1a797be391993d956b1cb073fbbaa3621d53</originalsourceid><addsrcrecordid>eNqFkD1vwjAQhq2qVaG0f6H12CWpLwlxLHVBqF8SUhd2y7EvwggSsB0q_n0dQVl7yy3vx91DyBOwFBiUL-vUaxu6gO0hzRjwFCDNS3ZFxlBxkQDLymsyZqyoElEKPiJ33q9ZHF7BLRllIpvmnBdj8jqjLf7QLYZVZ2jo6L5XbbDNkfreNUoj7V2tWrpCFaj1G9UaatvY62043pObRm08Ppz3hCzf35bzz2Tx_fE1ny0SXVRlSAxUIBgqDdgoMFk8KNeoCtGoBhQXvMZcgBC5EdOyBl0znjd1rVReZmCm-YQ8n2J3rtv36IPcWq9xE4_BrvcSBK84iAwGKT9Jteu8d9jInbNb5Y4SmBzIybW8kJMDOQkgI7nofDyX9PUWzcX3hyoKZicBxk8PFt0QhK1GYx3qIE1n_y35BfZThFE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1978719215</pqid></control><display><type>article</type><title>A new method to quantify surface urban heat island intensity</title><source>Elsevier ScienceDirect Journals</source><creator>Li, Huidong ; Zhou, Yuyu ; Li, Xiaoma ; Meng, Lin ; Wang, Xun ; Wu, Sha ; Sodoudi, Sahar</creator><creatorcontrib>Li, Huidong ; Zhou, Yuyu ; Li, Xiaoma ; Meng, Lin ; Wang, Xun ; Wu, Sha ; Sodoudi, Sahar</creatorcontrib><description>Reliable quantification of urban heat island (UHI) can contribute to the effective evaluation of potential heat risk. Traditional methods for the quantification of UHI intensity (UHII) using pairs-measurements are sensitive to the choice of stations or grids. In order to get rid of the limitation of urban/rural divisions, this paper proposes a new approach to quantify surface UHII (SUHII) using the relationship between MODIS land surface temperature (LST) and impervious surface areas (ISA). Given the footprint of LST measurement, the ISA was regionalized to include the information of neighborhood pixels using a Kernel Density Estimation (KDE) method. Considering the footprint improves the LST-ISA relationship. The LST shows highly positive correlation with the KDE regionalized ISA (ISAKDE). The linear functions of LST are well fitted by the ISAKDE in both annual and daily scales for the city of Berlin. The slope of the linear function represents the increase in LST from the natural surface in rural regions to the impervious surface in urban regions, and is defined as SUHII in this study. The calculated SUHII show high values in summer and during the day than in winter and at night. The new method is also verified using finer resolution Landset data, and the results further prove its reliability. [Display omitted] •Quantifying surface urban heat island intensity using the relationship between LST and Impervious Surface Areas.•The impervious surface areas was regionalized within the footprint of remote sensing observation using a Kernel Density Estimation method.•Linear functions of LST were well fitted using the regionalized impervious surface areas.•Slope of the linear function of LST was defined as the surface urban heat island intensity.</description><identifier>ISSN: 0048-9697</identifier><identifier>EISSN: 1879-1026</identifier><identifier>DOI: 10.1016/j.scitotenv.2017.11.360</identifier><identifier>PMID: 29253774</identifier><language>eng</language><publisher>Netherlands: Elsevier B.V</publisher><subject>Footprint of remote sensing observation ; Impervious surface area ; Kernel density estimation ; Land surface temperature ; Surface urban heat island</subject><ispartof>The Science of the total environment, 2018-05, Vol.624, p.262-272</ispartof><rights>2017 The Authors</rights><rights>Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c486t-d18190eac1efa1d26973cea49faf1a797be391993d956b1cb073fbbaa3621d53</citedby><cites>FETCH-LOGICAL-c486t-d18190eac1efa1d26973cea49faf1a797be391993d956b1cb073fbbaa3621d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0048969717334186$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29253774$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Huidong</creatorcontrib><creatorcontrib>Zhou, Yuyu</creatorcontrib><creatorcontrib>Li, Xiaoma</creatorcontrib><creatorcontrib>Meng, Lin</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wu, Sha</creatorcontrib><creatorcontrib>Sodoudi, Sahar</creatorcontrib><title>A new method to quantify surface urban heat island intensity</title><title>The Science of the total environment</title><addtitle>Sci Total Environ</addtitle><description>Reliable quantification of urban heat island (UHI) can contribute to the effective evaluation of potential heat risk. Traditional methods for the quantification of UHI intensity (UHII) using pairs-measurements are sensitive to the choice of stations or grids. In order to get rid of the limitation of urban/rural divisions, this paper proposes a new approach to quantify surface UHII (SUHII) using the relationship between MODIS land surface temperature (LST) and impervious surface areas (ISA). Given the footprint of LST measurement, the ISA was regionalized to include the information of neighborhood pixels using a Kernel Density Estimation (KDE) method. Considering the footprint improves the LST-ISA relationship. The LST shows highly positive correlation with the KDE regionalized ISA (ISAKDE). The linear functions of LST are well fitted by the ISAKDE in both annual and daily scales for the city of Berlin. The slope of the linear function represents the increase in LST from the natural surface in rural regions to the impervious surface in urban regions, and is defined as SUHII in this study. The calculated SUHII show high values in summer and during the day than in winter and at night. The new method is also verified using finer resolution Landset data, and the results further prove its reliability. [Display omitted] •Quantifying surface urban heat island intensity using the relationship between LST and Impervious Surface Areas.•The impervious surface areas was regionalized within the footprint of remote sensing observation using a Kernel Density Estimation method.•Linear functions of LST were well fitted using the regionalized impervious surface areas.•Slope of the linear function of LST was defined as the surface urban heat island intensity.</description><subject>Footprint of remote sensing observation</subject><subject>Impervious surface area</subject><subject>Kernel density estimation</subject><subject>Land surface temperature</subject><subject>Surface urban heat island</subject><issn>0048-9697</issn><issn>1879-1026</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkD1vwjAQhq2qVaG0f6H12CWpLwlxLHVBqF8SUhd2y7EvwggSsB0q_n0dQVl7yy3vx91DyBOwFBiUL-vUaxu6gO0hzRjwFCDNS3ZFxlBxkQDLymsyZqyoElEKPiJ33q9ZHF7BLRllIpvmnBdj8jqjLf7QLYZVZ2jo6L5XbbDNkfreNUoj7V2tWrpCFaj1G9UaatvY62043pObRm08Ppz3hCzf35bzz2Tx_fE1ny0SXVRlSAxUIBgqDdgoMFk8KNeoCtGoBhQXvMZcgBC5EdOyBl0znjd1rVReZmCm-YQ8n2J3rtv36IPcWq9xE4_BrvcSBK84iAwGKT9Jteu8d9jInbNb5Y4SmBzIybW8kJMDOQkgI7nofDyX9PUWzcX3hyoKZicBxk8PFt0QhK1GYx3qIE1n_y35BfZThFE</recordid><startdate>20180515</startdate><enddate>20180515</enddate><creator>Li, Huidong</creator><creator>Zhou, Yuyu</creator><creator>Li, Xiaoma</creator><creator>Meng, Lin</creator><creator>Wang, Xun</creator><creator>Wu, Sha</creator><creator>Sodoudi, Sahar</creator><general>Elsevier B.V</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180515</creationdate><title>A new method to quantify surface urban heat island intensity</title><author>Li, Huidong ; Zhou, Yuyu ; Li, Xiaoma ; Meng, Lin ; Wang, Xun ; Wu, Sha ; Sodoudi, Sahar</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c486t-d18190eac1efa1d26973cea49faf1a797be391993d956b1cb073fbbaa3621d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Footprint of remote sensing observation</topic><topic>Impervious surface area</topic><topic>Kernel density estimation</topic><topic>Land surface temperature</topic><topic>Surface urban heat island</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Huidong</creatorcontrib><creatorcontrib>Zhou, Yuyu</creatorcontrib><creatorcontrib>Li, Xiaoma</creatorcontrib><creatorcontrib>Meng, Lin</creatorcontrib><creatorcontrib>Wang, Xun</creatorcontrib><creatorcontrib>Wu, Sha</creatorcontrib><creatorcontrib>Sodoudi, Sahar</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>The Science of the total environment</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Huidong</au><au>Zhou, Yuyu</au><au>Li, Xiaoma</au><au>Meng, Lin</au><au>Wang, Xun</au><au>Wu, Sha</au><au>Sodoudi, Sahar</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A new method to quantify surface urban heat island intensity</atitle><jtitle>The Science of the total environment</jtitle><addtitle>Sci Total Environ</addtitle><date>2018-05-15</date><risdate>2018</risdate><volume>624</volume><spage>262</spage><epage>272</epage><pages>262-272</pages><issn>0048-9697</issn><eissn>1879-1026</eissn><abstract>Reliable quantification of urban heat island (UHI) can contribute to the effective evaluation of potential heat risk. Traditional methods for the quantification of UHI intensity (UHII) using pairs-measurements are sensitive to the choice of stations or grids. In order to get rid of the limitation of urban/rural divisions, this paper proposes a new approach to quantify surface UHII (SUHII) using the relationship between MODIS land surface temperature (LST) and impervious surface areas (ISA). Given the footprint of LST measurement, the ISA was regionalized to include the information of neighborhood pixels using a Kernel Density Estimation (KDE) method. Considering the footprint improves the LST-ISA relationship. The LST shows highly positive correlation with the KDE regionalized ISA (ISAKDE). The linear functions of LST are well fitted by the ISAKDE in both annual and daily scales for the city of Berlin. The slope of the linear function represents the increase in LST from the natural surface in rural regions to the impervious surface in urban regions, and is defined as SUHII in this study. The calculated SUHII show high values in summer and during the day than in winter and at night. The new method is also verified using finer resolution Landset data, and the results further prove its reliability. [Display omitted] •Quantifying surface urban heat island intensity using the relationship between LST and Impervious Surface Areas.•The impervious surface areas was regionalized within the footprint of remote sensing observation using a Kernel Density Estimation method.•Linear functions of LST were well fitted using the regionalized impervious surface areas.•Slope of the linear function of LST was defined as the surface urban heat island intensity.</abstract><cop>Netherlands</cop><pub>Elsevier B.V</pub><pmid>29253774</pmid><doi>10.1016/j.scitotenv.2017.11.360</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0048-9697
ispartof The Science of the total environment, 2018-05, Vol.624, p.262-272
issn 0048-9697
1879-1026
language eng
recordid cdi_proquest_miscellaneous_1978719215
source Elsevier ScienceDirect Journals
subjects Footprint of remote sensing observation
Impervious surface area
Kernel density estimation
Land surface temperature
Surface urban heat island
title A new method to quantify surface urban heat island intensity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A35%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20new%20method%20to%20quantify%20surface%20urban%20heat%20island%20intensity&rft.jtitle=The%20Science%20of%20the%20total%20environment&rft.au=Li,%20Huidong&rft.date=2018-05-15&rft.volume=624&rft.spage=262&rft.epage=272&rft.pages=262-272&rft.issn=0048-9697&rft.eissn=1879-1026&rft_id=info:doi/10.1016/j.scitotenv.2017.11.360&rft_dat=%3Cproquest_cross%3E1978719215%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1978719215&rft_id=info:pmid/29253774&rft_els_id=S0048969717334186&rfr_iscdi=true