Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity

Polycaprolactone with five different molecular weights was spin-coated on silicon wafers and plasma immersion ion implanted (PIII) with ion fluence in the range 5 × 10 14 –2 × 10 16  ions/cm 2 . The effects of PIII treatment on the optical properties, chemical structure, crystallinity, morphology, g...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of materials science. Materials in medicine 2018-01, Vol.29 (1), p.5-18, Article 5
Hauptverfasser: Kosobrodova, Elena, Kondyurin, Alexey, Chrzanowski, Wojciech, Theodoropoulos, Christina, Morganti, Elena, Hutmacher, Dietmar, Bilek, Marcela M. M.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 18
container_issue 1
container_start_page 5
container_title Journal of materials science. Materials in medicine
container_volume 29
creator Kosobrodova, Elena
Kondyurin, Alexey
Chrzanowski, Wojciech
Theodoropoulos, Christina
Morganti, Elena
Hutmacher, Dietmar
Bilek, Marcela M. M.
description Polycaprolactone with five different molecular weights was spin-coated on silicon wafers and plasma immersion ion implanted (PIII) with ion fluence in the range 5 × 10 14 –2 × 10 16  ions/cm 2 . The effects of PIII treatment on the optical properties, chemical structure, crystallinity, morphology, gel fraction formation and wettability were investigated. As in the case of a number of previously studied polymers, oxidation and hydrophobic recovery of the PIII treated PCL follow second order kinetics. CAPA 6250, which has the lowest molecular weight and the highest degree of crystallinity of the untreated PCL films studied, has the highest carbonization of the modified layer after PIII treatment. Untreated medical grade PCL films, mPCL PC12 (Perstorp) and mPCL Osteopore TM have similar chemical structures and crystallinity. Accordingly, the chemical and structural transformations caused by PIII treatment and post-treatment oxidation are almost identical for these two polymers. In general, PIII treatment destroys the nano-scale lamellar structure and results in a reduction of PCL crystallinity. Examination after washing PIII treated PCL films in toluene confirmed our hypothesis that cross-linking due to PIII treatment is significantly higher in semi-crystalline PCL as compared with amorphous polymers. Graphical abstract
doi_str_mv 10.1007/s10856-017-6009-1
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977783706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977783706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c372t-4c7046d3dab1db14c5fbd9636e2e963fd0e66ab380659784a898b2a5cbcfea23</originalsourceid><addsrcrecordid>eNp1kU1r3DAQhkVp6G42-QG9FEEvvbgZWdaHj2FJm0Cgl9yFLMuJFtlyJbnL_vtos2kpgYDEMNIzr0bzIvSZwHcCIK4SAcl4BURUHKCtyAe0JkzQqpFUfkRraJmoGkZhhc5T2gFA0zL2Ca3qtm4oSLFG880wWJNxGPDsdRo1duNoY3Jhwi97LMdT1vmYlDUHfzB6jsFrk8Nk8d7lJ_xHRxeWhMfgrVm8jnhv3eNTTlhPPTbxkLL23k0uHy7Q2aB9spevcYMeftw8bG-r-18_77bX95Whos5VYwQ0vKe97kjfkcawoetbTrmtbQlDD5Zz3VEJnLVCNlq2sqs1M50ZrK7pBn07yZZWfy82ZTW6ZKwvn7GlU0VaIYSkAnhBv75Bd2GJU2nuhSKE8jLTDSInysSQUrSDmqMbdTwoAurohjq5oYob6uiGIqXmy6vy0o22_1fxd_wFqE9AKlfTo43_Pf2u6jNDqZeR</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977113657</pqid></control><display><type>article</type><title>Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity</title><source>Springer Nature - Complete Springer Journals</source><creator>Kosobrodova, Elena ; Kondyurin, Alexey ; Chrzanowski, Wojciech ; Theodoropoulos, Christina ; Morganti, Elena ; Hutmacher, Dietmar ; Bilek, Marcela M. M.</creator><creatorcontrib>Kosobrodova, Elena ; Kondyurin, Alexey ; Chrzanowski, Wojciech ; Theodoropoulos, Christina ; Morganti, Elena ; Hutmacher, Dietmar ; Bilek, Marcela M. M.</creatorcontrib><description>Polycaprolactone with five different molecular weights was spin-coated on silicon wafers and plasma immersion ion implanted (PIII) with ion fluence in the range 5 × 10 14 –2 × 10 16  ions/cm 2 . The effects of PIII treatment on the optical properties, chemical structure, crystallinity, morphology, gel fraction formation and wettability were investigated. As in the case of a number of previously studied polymers, oxidation and hydrophobic recovery of the PIII treated PCL follow second order kinetics. CAPA 6250, which has the lowest molecular weight and the highest degree of crystallinity of the untreated PCL films studied, has the highest carbonization of the modified layer after PIII treatment. Untreated medical grade PCL films, mPCL PC12 (Perstorp) and mPCL Osteopore TM have similar chemical structures and crystallinity. Accordingly, the chemical and structural transformations caused by PIII treatment and post-treatment oxidation are almost identical for these two polymers. In general, PIII treatment destroys the nano-scale lamellar structure and results in a reduction of PCL crystallinity. Examination after washing PIII treated PCL films in toluene confirmed our hypothesis that cross-linking due to PIII treatment is significantly higher in semi-crystalline PCL as compared with amorphous polymers. Graphical abstract</description><identifier>ISSN: 0957-4530</identifier><identifier>EISSN: 1573-4838</identifier><identifier>DOI: 10.1007/s10856-017-6009-1</identifier><identifier>PMID: 29243087</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Biocompatibility ; Biomaterials ; Biomaterials Synthesis and Characterization ; Biomedical Engineering and Bioengineering ; Biomedical materials ; Carbonization ; Ceramics ; Chemistry and Materials Science ; Composites ; Crosslinking ; Crystal structure ; Crystallinity ; Degree of crystallinity ; Glass ; Hydrophobicity ; Immersion ; Ion implantation ; Kinetics ; Lamellar structure ; Materials Science ; Molecular weight ; Natural Materials ; Optical properties ; Oxidation ; Polycaprolactone ; Polymer Sciences ; Polymers ; Regenerative Medicine/Tissue Engineering ; Silicon wafers ; Surfaces and Interfaces ; Thin Films ; Toluene ; Wettability</subject><ispartof>Journal of materials science. Materials in medicine, 2018-01, Vol.29 (1), p.5-18, Article 5</ispartof><rights>Springer Science+Business Media, LLC, part of Springer Nature 2017</rights><rights>Journal of Materials Science: Materials in Medicine is a copyright of Springer, (2017). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c372t-4c7046d3dab1db14c5fbd9636e2e963fd0e66ab380659784a898b2a5cbcfea23</citedby><cites>FETCH-LOGICAL-c372t-4c7046d3dab1db14c5fbd9636e2e963fd0e66ab380659784a898b2a5cbcfea23</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10856-017-6009-1$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10856-017-6009-1$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,778,782,27911,27912,41475,42544,51306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29243087$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kosobrodova, Elena</creatorcontrib><creatorcontrib>Kondyurin, Alexey</creatorcontrib><creatorcontrib>Chrzanowski, Wojciech</creatorcontrib><creatorcontrib>Theodoropoulos, Christina</creatorcontrib><creatorcontrib>Morganti, Elena</creatorcontrib><creatorcontrib>Hutmacher, Dietmar</creatorcontrib><creatorcontrib>Bilek, Marcela M. M.</creatorcontrib><title>Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity</title><title>Journal of materials science. Materials in medicine</title><addtitle>J Mater Sci: Mater Med</addtitle><addtitle>J Mater Sci Mater Med</addtitle><description>Polycaprolactone with five different molecular weights was spin-coated on silicon wafers and plasma immersion ion implanted (PIII) with ion fluence in the range 5 × 10 14 –2 × 10 16  ions/cm 2 . The effects of PIII treatment on the optical properties, chemical structure, crystallinity, morphology, gel fraction formation and wettability were investigated. As in the case of a number of previously studied polymers, oxidation and hydrophobic recovery of the PIII treated PCL follow second order kinetics. CAPA 6250, which has the lowest molecular weight and the highest degree of crystallinity of the untreated PCL films studied, has the highest carbonization of the modified layer after PIII treatment. Untreated medical grade PCL films, mPCL PC12 (Perstorp) and mPCL Osteopore TM have similar chemical structures and crystallinity. Accordingly, the chemical and structural transformations caused by PIII treatment and post-treatment oxidation are almost identical for these two polymers. In general, PIII treatment destroys the nano-scale lamellar structure and results in a reduction of PCL crystallinity. Examination after washing PIII treated PCL films in toluene confirmed our hypothesis that cross-linking due to PIII treatment is significantly higher in semi-crystalline PCL as compared with amorphous polymers. Graphical abstract</description><subject>Biocompatibility</subject><subject>Biomaterials</subject><subject>Biomaterials Synthesis and Characterization</subject><subject>Biomedical Engineering and Bioengineering</subject><subject>Biomedical materials</subject><subject>Carbonization</subject><subject>Ceramics</subject><subject>Chemistry and Materials Science</subject><subject>Composites</subject><subject>Crosslinking</subject><subject>Crystal structure</subject><subject>Crystallinity</subject><subject>Degree of crystallinity</subject><subject>Glass</subject><subject>Hydrophobicity</subject><subject>Immersion</subject><subject>Ion implantation</subject><subject>Kinetics</subject><subject>Lamellar structure</subject><subject>Materials Science</subject><subject>Molecular weight</subject><subject>Natural Materials</subject><subject>Optical properties</subject><subject>Oxidation</subject><subject>Polycaprolactone</subject><subject>Polymer Sciences</subject><subject>Polymers</subject><subject>Regenerative Medicine/Tissue Engineering</subject><subject>Silicon wafers</subject><subject>Surfaces and Interfaces</subject><subject>Thin Films</subject><subject>Toluene</subject><subject>Wettability</subject><issn>0957-4530</issn><issn>1573-4838</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp1kU1r3DAQhkVp6G42-QG9FEEvvbgZWdaHj2FJm0Cgl9yFLMuJFtlyJbnL_vtos2kpgYDEMNIzr0bzIvSZwHcCIK4SAcl4BURUHKCtyAe0JkzQqpFUfkRraJmoGkZhhc5T2gFA0zL2Ca3qtm4oSLFG880wWJNxGPDsdRo1duNoY3Jhwi97LMdT1vmYlDUHfzB6jsFrk8Nk8d7lJ_xHRxeWhMfgrVm8jnhv3eNTTlhPPTbxkLL23k0uHy7Q2aB9spevcYMeftw8bG-r-18_77bX95Whos5VYwQ0vKe97kjfkcawoetbTrmtbQlDD5Zz3VEJnLVCNlq2sqs1M50ZrK7pBn07yZZWfy82ZTW6ZKwvn7GlU0VaIYSkAnhBv75Bd2GJU2nuhSKE8jLTDSInysSQUrSDmqMbdTwoAurohjq5oYob6uiGIqXmy6vy0o22_1fxd_wFqE9AKlfTo43_Pf2u6jNDqZeR</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Kosobrodova, Elena</creator><creator>Kondyurin, Alexey</creator><creator>Chrzanowski, Wojciech</creator><creator>Theodoropoulos, Christina</creator><creator>Morganti, Elena</creator><creator>Hutmacher, Dietmar</creator><creator>Bilek, Marcela M. M.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>S0W</scope><scope>7X8</scope></search><sort><creationdate>20180101</creationdate><title>Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity</title><author>Kosobrodova, Elena ; Kondyurin, Alexey ; Chrzanowski, Wojciech ; Theodoropoulos, Christina ; Morganti, Elena ; Hutmacher, Dietmar ; Bilek, Marcela M. M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c372t-4c7046d3dab1db14c5fbd9636e2e963fd0e66ab380659784a898b2a5cbcfea23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biocompatibility</topic><topic>Biomaterials</topic><topic>Biomaterials Synthesis and Characterization</topic><topic>Biomedical Engineering and Bioengineering</topic><topic>Biomedical materials</topic><topic>Carbonization</topic><topic>Ceramics</topic><topic>Chemistry and Materials Science</topic><topic>Composites</topic><topic>Crosslinking</topic><topic>Crystal structure</topic><topic>Crystallinity</topic><topic>Degree of crystallinity</topic><topic>Glass</topic><topic>Hydrophobicity</topic><topic>Immersion</topic><topic>Ion implantation</topic><topic>Kinetics</topic><topic>Lamellar structure</topic><topic>Materials Science</topic><topic>Molecular weight</topic><topic>Natural Materials</topic><topic>Optical properties</topic><topic>Oxidation</topic><topic>Polycaprolactone</topic><topic>Polymer Sciences</topic><topic>Polymers</topic><topic>Regenerative Medicine/Tissue Engineering</topic><topic>Silicon wafers</topic><topic>Surfaces and Interfaces</topic><topic>Thin Films</topic><topic>Toluene</topic><topic>Wettability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kosobrodova, Elena</creatorcontrib><creatorcontrib>Kondyurin, Alexey</creatorcontrib><creatorcontrib>Chrzanowski, Wojciech</creatorcontrib><creatorcontrib>Theodoropoulos, Christina</creatorcontrib><creatorcontrib>Morganti, Elena</creatorcontrib><creatorcontrib>Hutmacher, Dietmar</creatorcontrib><creatorcontrib>Bilek, Marcela M. M.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection (ProQuest)</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of materials science. Materials in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kosobrodova, Elena</au><au>Kondyurin, Alexey</au><au>Chrzanowski, Wojciech</au><au>Theodoropoulos, Christina</au><au>Morganti, Elena</au><au>Hutmacher, Dietmar</au><au>Bilek, Marcela M. M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity</atitle><jtitle>Journal of materials science. Materials in medicine</jtitle><stitle>J Mater Sci: Mater Med</stitle><addtitle>J Mater Sci Mater Med</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>29</volume><issue>1</issue><spage>5</spage><epage>18</epage><pages>5-18</pages><artnum>5</artnum><issn>0957-4530</issn><eissn>1573-4838</eissn><abstract>Polycaprolactone with five different molecular weights was spin-coated on silicon wafers and plasma immersion ion implanted (PIII) with ion fluence in the range 5 × 10 14 –2 × 10 16  ions/cm 2 . The effects of PIII treatment on the optical properties, chemical structure, crystallinity, morphology, gel fraction formation and wettability were investigated. As in the case of a number of previously studied polymers, oxidation and hydrophobic recovery of the PIII treated PCL follow second order kinetics. CAPA 6250, which has the lowest molecular weight and the highest degree of crystallinity of the untreated PCL films studied, has the highest carbonization of the modified layer after PIII treatment. Untreated medical grade PCL films, mPCL PC12 (Perstorp) and mPCL Osteopore TM have similar chemical structures and crystallinity. Accordingly, the chemical and structural transformations caused by PIII treatment and post-treatment oxidation are almost identical for these two polymers. In general, PIII treatment destroys the nano-scale lamellar structure and results in a reduction of PCL crystallinity. Examination after washing PIII treated PCL films in toluene confirmed our hypothesis that cross-linking due to PIII treatment is significantly higher in semi-crystalline PCL as compared with amorphous polymers. Graphical abstract</abstract><cop>New York</cop><pub>Springer US</pub><pmid>29243087</pmid><doi>10.1007/s10856-017-6009-1</doi><tpages>18</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0957-4530
ispartof Journal of materials science. Materials in medicine, 2018-01, Vol.29 (1), p.5-18, Article 5
issn 0957-4530
1573-4838
language eng
recordid cdi_proquest_miscellaneous_1977783706
source Springer Nature - Complete Springer Journals
subjects Biocompatibility
Biomaterials
Biomaterials Synthesis and Characterization
Biomedical Engineering and Bioengineering
Biomedical materials
Carbonization
Ceramics
Chemistry and Materials Science
Composites
Crosslinking
Crystal structure
Crystallinity
Degree of crystallinity
Glass
Hydrophobicity
Immersion
Ion implantation
Kinetics
Lamellar structure
Materials Science
Molecular weight
Natural Materials
Optical properties
Oxidation
Polycaprolactone
Polymer Sciences
Polymers
Regenerative Medicine/Tissue Engineering
Silicon wafers
Surfaces and Interfaces
Thin Films
Toluene
Wettability
title Effect of plasma immersion ion implantation on polycaprolactone with various molecular weights and crystallinity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T03%3A00%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effect%20of%20plasma%20immersion%20ion%20implantation%20on%20polycaprolactone%20with%20various%20molecular%20weights%20and%20crystallinity&rft.jtitle=Journal%20of%20materials%20science.%20Materials%20in%20medicine&rft.au=Kosobrodova,%20Elena&rft.date=2018-01-01&rft.volume=29&rft.issue=1&rft.spage=5&rft.epage=18&rft.pages=5-18&rft.artnum=5&rft.issn=0957-4530&rft.eissn=1573-4838&rft_id=info:doi/10.1007/s10856-017-6009-1&rft_dat=%3Cproquest_cross%3E1977783706%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977113657&rft_id=info:pmid/29243087&rfr_iscdi=true