A novel approach of modeling continuous dark hydrogen fermentation

[Display omitted] •The novel model accounts for the different rates of the key metabolic reactions.•The model identifies the active pathways in a particular situation.•The pathway of H2 production from sugars through acetate is probably not active.•Hydrogen production is strongly associated with but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioresource technology 2018-02, Vol.250, p.784-792
Hauptverfasser: Alexandropoulou, Maria, Antonopoulou, Georgia, Lyberatos, Gerasimos
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 792
container_issue
container_start_page 784
container_title Bioresource technology
container_volume 250
creator Alexandropoulou, Maria
Antonopoulou, Georgia
Lyberatos, Gerasimos
description [Display omitted] •The novel model accounts for the different rates of the key metabolic reactions.•The model identifies the active pathways in a particular situation.•The pathway of H2 production from sugars through acetate is probably not active.•Hydrogen production is strongly associated with butyrate production in this work.•Homoacetogenesis is probably not active. In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates.
doi_str_mv 10.1016/j.biortech.2017.12.005
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977782652</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0960852417321144</els_id><sourcerecordid>1977782652</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-c860f87c3205e3319a89c6f301e8e2b61c5134a7305695b44fac70e6a9f3c70e3</originalsourceid><addsrcrecordid>eNqFkEtPwzAQhC0EgvL4CyhHLglrO7bjGw_xkpC4wNlynQ11Sexip0j996QqcOW0e5jZmf0IOadQUaDyclnNfUwjukXFgKqKsgpA7JEZbRQvmVZyn8xASygbweojcpzzEgA4VeyQHDHNakGZnpGb6yLEL-wLu1qlaN2iiF0xxBZ7H94LF8Powzquc9Ha9FEsNm2K7xiKDtOAYbSjj-GUHHS2z3j2M0_I2_3d6-1j-fzy8HR7_Vy6GsRYukZC1yjHGQjknGrbaCc7DhQbZHNJnaC8toqDkFrM67qzTgFKqzu-XfgJudjdnYp-rjGPZvDZYd_bgFNDQ7VSqmFSsEkqd1KXYs4JO7NKfrBpYyiYLT-zNL_8zJafocxM_Cbj-U_Gej5g-2f7BTYJrnYCnD798phMdh6Dw9YndKNpo_8v4xtTLYRd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977782652</pqid></control><display><type>article</type><title>A novel approach of modeling continuous dark hydrogen fermentation</title><source>Access via ScienceDirect (Elsevier)</source><creator>Alexandropoulou, Maria ; Antonopoulou, Georgia ; Lyberatos, Gerasimos</creator><creatorcontrib>Alexandropoulou, Maria ; Antonopoulou, Georgia ; Lyberatos, Gerasimos</creatorcontrib><description>[Display omitted] •The novel model accounts for the different rates of the key metabolic reactions.•The model identifies the active pathways in a particular situation.•The pathway of H2 production from sugars through acetate is probably not active.•Hydrogen production is strongly associated with butyrate production in this work.•Homoacetogenesis is probably not active. In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates.</description><identifier>ISSN: 0960-8524</identifier><identifier>EISSN: 1873-2976</identifier><identifier>DOI: 10.1016/j.biortech.2017.12.005</identifier><identifier>PMID: 29245129</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Biohydrogen ; Continuous fermentative hydrogen production ; Different kinetic rates ; Food waste ; Metabolic pathways ; Modeling ; Selectivity</subject><ispartof>Bioresource technology, 2018-02, Vol.250, p.784-792</ispartof><rights>2017 Elsevier Ltd</rights><rights>Copyright © 2017 Elsevier Ltd. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-c860f87c3205e3319a89c6f301e8e2b61c5134a7305695b44fac70e6a9f3c70e3</citedby><cites>FETCH-LOGICAL-c405t-c860f87c3205e3319a89c6f301e8e2b61c5134a7305695b44fac70e6a9f3c70e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.biortech.2017.12.005$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29245129$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Alexandropoulou, Maria</creatorcontrib><creatorcontrib>Antonopoulou, Georgia</creatorcontrib><creatorcontrib>Lyberatos, Gerasimos</creatorcontrib><title>A novel approach of modeling continuous dark hydrogen fermentation</title><title>Bioresource technology</title><addtitle>Bioresour Technol</addtitle><description>[Display omitted] •The novel model accounts for the different rates of the key metabolic reactions.•The model identifies the active pathways in a particular situation.•The pathway of H2 production from sugars through acetate is probably not active.•Hydrogen production is strongly associated with butyrate production in this work.•Homoacetogenesis is probably not active. In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates.</description><subject>Biohydrogen</subject><subject>Continuous fermentative hydrogen production</subject><subject>Different kinetic rates</subject><subject>Food waste</subject><subject>Metabolic pathways</subject><subject>Modeling</subject><subject>Selectivity</subject><issn>0960-8524</issn><issn>1873-2976</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqFkEtPwzAQhC0EgvL4CyhHLglrO7bjGw_xkpC4wNlynQ11Sexip0j996QqcOW0e5jZmf0IOadQUaDyclnNfUwjukXFgKqKsgpA7JEZbRQvmVZyn8xASygbweojcpzzEgA4VeyQHDHNakGZnpGb6yLEL-wLu1qlaN2iiF0xxBZ7H94LF8Powzquc9Ha9FEsNm2K7xiKDtOAYbSjj-GUHHS2z3j2M0_I2_3d6-1j-fzy8HR7_Vy6GsRYukZC1yjHGQjknGrbaCc7DhQbZHNJnaC8toqDkFrM67qzTgFKqzu-XfgJudjdnYp-rjGPZvDZYd_bgFNDQ7VSqmFSsEkqd1KXYs4JO7NKfrBpYyiYLT-zNL_8zJafocxM_Cbj-U_Gej5g-2f7BTYJrnYCnD798phMdh6Dw9YndKNpo_8v4xtTLYRd</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Alexandropoulou, Maria</creator><creator>Antonopoulou, Georgia</creator><creator>Lyberatos, Gerasimos</creator><general>Elsevier Ltd</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20180201</creationdate><title>A novel approach of modeling continuous dark hydrogen fermentation</title><author>Alexandropoulou, Maria ; Antonopoulou, Georgia ; Lyberatos, Gerasimos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-c860f87c3205e3319a89c6f301e8e2b61c5134a7305695b44fac70e6a9f3c70e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biohydrogen</topic><topic>Continuous fermentative hydrogen production</topic><topic>Different kinetic rates</topic><topic>Food waste</topic><topic>Metabolic pathways</topic><topic>Modeling</topic><topic>Selectivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alexandropoulou, Maria</creatorcontrib><creatorcontrib>Antonopoulou, Georgia</creatorcontrib><creatorcontrib>Lyberatos, Gerasimos</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Bioresource technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alexandropoulou, Maria</au><au>Antonopoulou, Georgia</au><au>Lyberatos, Gerasimos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach of modeling continuous dark hydrogen fermentation</atitle><jtitle>Bioresource technology</jtitle><addtitle>Bioresour Technol</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>250</volume><spage>784</spage><epage>792</epage><pages>784-792</pages><issn>0960-8524</issn><eissn>1873-2976</eissn><abstract>[Display omitted] •The novel model accounts for the different rates of the key metabolic reactions.•The model identifies the active pathways in a particular situation.•The pathway of H2 production from sugars through acetate is probably not active.•Hydrogen production is strongly associated with butyrate production in this work.•Homoacetogenesis is probably not active. In this study a novel modeling approach for describing fermentative hydrogen production in a continuous stirred tank reactor (CSTR) was developed, using the Aquasim modeling platform. This model accounts for the key metabolic reactions taking place in a fermentative hydrogen producing reactor, using fixed stoichiometry but different reaction rates. Biomass yields are determined based on bioenergetics. The model is capable of describing very well the variation in the distribution of metabolic products for a wide range of hydraulic retention times (HRT). The modeling approach is demonstrated using the experimental data obtained from a CSTR, fed with food industry waste (FIW), operating at different HRTs. The kinetic parameters were estimated through fitting to the experimental results. Hydrogen and total biogas production rates were predicted very well by the model, validating the basic assumptions regarding the implicated stoichiometric biochemical reactions and their kinetic rates.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>29245129</pmid><doi>10.1016/j.biortech.2017.12.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0960-8524
ispartof Bioresource technology, 2018-02, Vol.250, p.784-792
issn 0960-8524
1873-2976
language eng
recordid cdi_proquest_miscellaneous_1977782652
source Access via ScienceDirect (Elsevier)
subjects Biohydrogen
Continuous fermentative hydrogen production
Different kinetic rates
Food waste
Metabolic pathways
Modeling
Selectivity
title A novel approach of modeling continuous dark hydrogen fermentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T06%3A13%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20of%20modeling%20continuous%20dark%20hydrogen%20fermentation&rft.jtitle=Bioresource%20technology&rft.au=Alexandropoulou,%20Maria&rft.date=2018-02-01&rft.volume=250&rft.spage=784&rft.epage=792&rft.pages=784-792&rft.issn=0960-8524&rft.eissn=1873-2976&rft_id=info:doi/10.1016/j.biortech.2017.12.005&rft_dat=%3Cproquest_cross%3E1977782652%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977782652&rft_id=info:pmid/29245129&rft_els_id=S0960852417321144&rfr_iscdi=true