High‐resolution hyperpolarized metabolic imaging of the rat heart using k–t PCA and k–t SPARSE

The purpose of this work was to increase the resolution of hyperpolarized metabolic imaging of the rat heart with accelerated imaging using k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE). Fully sampled in vivo datasets were acquired from six healthy rats after the...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:NMR in biomedicine 2018-02, Vol.31 (2), p.n/a
Hauptverfasser: Wespi, Patrick, Steinhauser, Jonas, Kwiatkowski, Grzegorz, Kozerke, Sebastian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 2
container_start_page
container_title NMR in biomedicine
container_volume 31
creator Wespi, Patrick
Steinhauser, Jonas
Kwiatkowski, Grzegorz
Kozerke, Sebastian
description The purpose of this work was to increase the resolution of hyperpolarized metabolic imaging of the rat heart with accelerated imaging using k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE). Fully sampled in vivo datasets were acquired from six healthy rats after the injection of hyperpolarized [1‐13C]pyruvate. Data were retrospectively undersampled and reconstructed with either k–t PCA or k–t SPARSE. Errors of signal–time curves of pyruvate, lactate and bicarbonate were determined to compare the two reconstruction algorithms for different undersampling factors R. Prospectively undersampled imaging at 1 × 1 × 3.5‐mm3 resolution was performed with both methods in the same animals and compared with the fully sampled acquisition. k–t SPARSE was found to perform better at R < 3, but was outperformed by k–t PCA at R ≥ 4. Prospectively undersampled data were successfully reconstructed with both k–t PCA and k–t SPARSE in all subjects. No significant difference between the undersampled and fully sampled data was found in terms of signal‐to‐noise ratio (SNR) performance and metabolic quantification. Accelerated imaging with both k–t PCA and k–t SPARSE allows an increase in resolution, thereby reducing the intravoxel dephasing of hyperpolarized metabolic imaging of the rat heart. k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE) are shown to allow an increase in the resolution of hyperpolarized metabolic imaging of the rat heart at 9.4 T by more than two‐fold relative to previous methods, thereby reducing intravoxel phase dispersion and facilitating segment‐wise analysis of metabolic ratios of the in vivo rat heart
doi_str_mv 10.1002/nbm.3876
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977780883</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1988508532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3496-c85af3334170321ddae0e5e0ae2e85d91ae0ba73e4ed97f4377665db6c12cdcd3</originalsourceid><addsrcrecordid>eNp1kM1q20AQgJeSUjtJoU8QFnLpRe7-Sbt7dIwbF5LUJOlZrLQjW4mkdXYlinvyIwTyhn6SyombQCGnYYaPj-FD6AslI0oI-9Zk9YgrmXxAQ0q0jqjQ7AANiY5ZxIUiA3QYwh0hRAnOPqEB00wIxtQQ2Vm5WG43jx6Cq7q2dA1erlfgV64yvvwDFtfQmsxVZY7L2izKZoFdgdslYG9avATjW9yF3fl-u3lq8Xwyxqax--1mPr6-mR6jj4WpAnzezyP06_v0djKLLn6e_5iML6KcC51EuYpNwTkXVBLOqLUGCMRADDBQsdW03zMjOQiwWhaCS5kksc2SnLLc5pYfoa8v3pV3Dx2ENq3LkENVmQZcF1KqpZSKKMV79PQ_9M51vum_6ymlYqJizt6EuXcheCjSle8r-HVKSborn_bl0135Hj3ZC7usBvsK_kvdA9EL8LusYP2uKL06u3wW_gV9Q461</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988508532</pqid></control><display><type>article</type><title>High‐resolution hyperpolarized metabolic imaging of the rat heart using k–t PCA and k–t SPARSE</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Wespi, Patrick ; Steinhauser, Jonas ; Kwiatkowski, Grzegorz ; Kozerke, Sebastian</creator><creatorcontrib>Wespi, Patrick ; Steinhauser, Jonas ; Kwiatkowski, Grzegorz ; Kozerke, Sebastian</creatorcontrib><description>The purpose of this work was to increase the resolution of hyperpolarized metabolic imaging of the rat heart with accelerated imaging using k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE). Fully sampled in vivo datasets were acquired from six healthy rats after the injection of hyperpolarized [1‐13C]pyruvate. Data were retrospectively undersampled and reconstructed with either k–t PCA or k–t SPARSE. Errors of signal–time curves of pyruvate, lactate and bicarbonate were determined to compare the two reconstruction algorithms for different undersampling factors R. Prospectively undersampled imaging at 1 × 1 × 3.5‐mm3 resolution was performed with both methods in the same animals and compared with the fully sampled acquisition. k–t SPARSE was found to perform better at R &lt; 3, but was outperformed by k–t PCA at R ≥ 4. Prospectively undersampled data were successfully reconstructed with both k–t PCA and k–t SPARSE in all subjects. No significant difference between the undersampled and fully sampled data was found in terms of signal‐to‐noise ratio (SNR) performance and metabolic quantification. Accelerated imaging with both k–t PCA and k–t SPARSE allows an increase in resolution, thereby reducing the intravoxel dephasing of hyperpolarized metabolic imaging of the rat heart. k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE) are shown to allow an increase in the resolution of hyperpolarized metabolic imaging of the rat heart at 9.4 T by more than two‐fold relative to previous methods, thereby reducing intravoxel phase dispersion and facilitating segment‐wise analysis of metabolic ratios of the in vivo rat heart</description><identifier>ISSN: 0952-3480</identifier><identifier>EISSN: 1099-1492</identifier><identifier>DOI: 10.1002/nbm.3876</identifier><identifier>PMID: 29244228</identifier><language>eng</language><publisher>England: Wiley Subscription Services, Inc</publisher><subject>accelerated imaging ; Animals ; Area Under Curve ; Bicarbonates ; Bicarbonates - metabolism ; Biological products ; Carbon Isotopes - metabolism ; Carbonates ; cardiac metabolism ; Computer Simulation ; Heart ; hyperpolarized 13C ; Image Processing, Computer-Assisted ; Image resolution ; k–t PCA ; k–t SPARSE ; Lactic acid ; Lactic Acid - metabolism ; Magnetic Resonance Imaging ; metabolic imaging ; Metabolism ; Myocardium - metabolism ; Principal Component Analysis ; Principal components analysis ; Pyruvic acid ; Pyruvic Acid - metabolism ; Rats ; Rats, Sprague-Dawley ; Signal-To-Noise Ratio</subject><ispartof>NMR in biomedicine, 2018-02, Vol.31 (2), p.n/a</ispartof><rights>Copyright © 2017 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2018 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3496-c85af3334170321ddae0e5e0ae2e85d91ae0ba73e4ed97f4377665db6c12cdcd3</citedby><cites>FETCH-LOGICAL-c3496-c85af3334170321ddae0e5e0ae2e85d91ae0ba73e4ed97f4377665db6c12cdcd3</cites><orcidid>0000-0003-4309-445X ; 0000-0003-3916-1285 ; 0000-0001-6783-3590 ; 0000-0003-3725-8884</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fnbm.3876$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fnbm.3876$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29244228$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wespi, Patrick</creatorcontrib><creatorcontrib>Steinhauser, Jonas</creatorcontrib><creatorcontrib>Kwiatkowski, Grzegorz</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><title>High‐resolution hyperpolarized metabolic imaging of the rat heart using k–t PCA and k–t SPARSE</title><title>NMR in biomedicine</title><addtitle>NMR Biomed</addtitle><description>The purpose of this work was to increase the resolution of hyperpolarized metabolic imaging of the rat heart with accelerated imaging using k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE). Fully sampled in vivo datasets were acquired from six healthy rats after the injection of hyperpolarized [1‐13C]pyruvate. Data were retrospectively undersampled and reconstructed with either k–t PCA or k–t SPARSE. Errors of signal–time curves of pyruvate, lactate and bicarbonate were determined to compare the two reconstruction algorithms for different undersampling factors R. Prospectively undersampled imaging at 1 × 1 × 3.5‐mm3 resolution was performed with both methods in the same animals and compared with the fully sampled acquisition. k–t SPARSE was found to perform better at R &lt; 3, but was outperformed by k–t PCA at R ≥ 4. Prospectively undersampled data were successfully reconstructed with both k–t PCA and k–t SPARSE in all subjects. No significant difference between the undersampled and fully sampled data was found in terms of signal‐to‐noise ratio (SNR) performance and metabolic quantification. Accelerated imaging with both k–t PCA and k–t SPARSE allows an increase in resolution, thereby reducing the intravoxel dephasing of hyperpolarized metabolic imaging of the rat heart. k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE) are shown to allow an increase in the resolution of hyperpolarized metabolic imaging of the rat heart at 9.4 T by more than two‐fold relative to previous methods, thereby reducing intravoxel phase dispersion and facilitating segment‐wise analysis of metabolic ratios of the in vivo rat heart</description><subject>accelerated imaging</subject><subject>Animals</subject><subject>Area Under Curve</subject><subject>Bicarbonates</subject><subject>Bicarbonates - metabolism</subject><subject>Biological products</subject><subject>Carbon Isotopes - metabolism</subject><subject>Carbonates</subject><subject>cardiac metabolism</subject><subject>Computer Simulation</subject><subject>Heart</subject><subject>hyperpolarized 13C</subject><subject>Image Processing, Computer-Assisted</subject><subject>Image resolution</subject><subject>k–t PCA</subject><subject>k–t SPARSE</subject><subject>Lactic acid</subject><subject>Lactic Acid - metabolism</subject><subject>Magnetic Resonance Imaging</subject><subject>metabolic imaging</subject><subject>Metabolism</subject><subject>Myocardium - metabolism</subject><subject>Principal Component Analysis</subject><subject>Principal components analysis</subject><subject>Pyruvic acid</subject><subject>Pyruvic Acid - metabolism</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Signal-To-Noise Ratio</subject><issn>0952-3480</issn><issn>1099-1492</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1q20AQgJeSUjtJoU8QFnLpRe7-Sbt7dIwbF5LUJOlZrLQjW4mkdXYlinvyIwTyhn6SyombQCGnYYaPj-FD6AslI0oI-9Zk9YgrmXxAQ0q0jqjQ7AANiY5ZxIUiA3QYwh0hRAnOPqEB00wIxtQQ2Vm5WG43jx6Cq7q2dA1erlfgV64yvvwDFtfQmsxVZY7L2izKZoFdgdslYG9avATjW9yF3fl-u3lq8Xwyxqax--1mPr6-mR6jj4WpAnzezyP06_v0djKLLn6e_5iML6KcC51EuYpNwTkXVBLOqLUGCMRADDBQsdW03zMjOQiwWhaCS5kksc2SnLLc5pYfoa8v3pV3Dx2ENq3LkENVmQZcF1KqpZSKKMV79PQ_9M51vum_6ymlYqJizt6EuXcheCjSle8r-HVKSborn_bl0135Hj3ZC7usBvsK_kvdA9EL8LusYP2uKL06u3wW_gV9Q461</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Wespi, Patrick</creator><creator>Steinhauser, Jonas</creator><creator>Kwiatkowski, Grzegorz</creator><creator>Kozerke, Sebastian</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0003-4309-445X</orcidid><orcidid>https://orcid.org/0000-0003-3916-1285</orcidid><orcidid>https://orcid.org/0000-0001-6783-3590</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid></search><sort><creationdate>201802</creationdate><title>High‐resolution hyperpolarized metabolic imaging of the rat heart using k–t PCA and k–t SPARSE</title><author>Wespi, Patrick ; Steinhauser, Jonas ; Kwiatkowski, Grzegorz ; Kozerke, Sebastian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3496-c85af3334170321ddae0e5e0ae2e85d91ae0ba73e4ed97f4377665db6c12cdcd3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>accelerated imaging</topic><topic>Animals</topic><topic>Area Under Curve</topic><topic>Bicarbonates</topic><topic>Bicarbonates - metabolism</topic><topic>Biological products</topic><topic>Carbon Isotopes - metabolism</topic><topic>Carbonates</topic><topic>cardiac metabolism</topic><topic>Computer Simulation</topic><topic>Heart</topic><topic>hyperpolarized 13C</topic><topic>Image Processing, Computer-Assisted</topic><topic>Image resolution</topic><topic>k–t PCA</topic><topic>k–t SPARSE</topic><topic>Lactic acid</topic><topic>Lactic Acid - metabolism</topic><topic>Magnetic Resonance Imaging</topic><topic>metabolic imaging</topic><topic>Metabolism</topic><topic>Myocardium - metabolism</topic><topic>Principal Component Analysis</topic><topic>Principal components analysis</topic><topic>Pyruvic acid</topic><topic>Pyruvic Acid - metabolism</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Signal-To-Noise Ratio</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wespi, Patrick</creatorcontrib><creatorcontrib>Steinhauser, Jonas</creatorcontrib><creatorcontrib>Kwiatkowski, Grzegorz</creatorcontrib><creatorcontrib>Kozerke, Sebastian</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>NMR in biomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wespi, Patrick</au><au>Steinhauser, Jonas</au><au>Kwiatkowski, Grzegorz</au><au>Kozerke, Sebastian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High‐resolution hyperpolarized metabolic imaging of the rat heart using k–t PCA and k–t SPARSE</atitle><jtitle>NMR in biomedicine</jtitle><addtitle>NMR Biomed</addtitle><date>2018-02</date><risdate>2018</risdate><volume>31</volume><issue>2</issue><epage>n/a</epage><issn>0952-3480</issn><eissn>1099-1492</eissn><abstract>The purpose of this work was to increase the resolution of hyperpolarized metabolic imaging of the rat heart with accelerated imaging using k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE). Fully sampled in vivo datasets were acquired from six healthy rats after the injection of hyperpolarized [1‐13C]pyruvate. Data were retrospectively undersampled and reconstructed with either k–t PCA or k–t SPARSE. Errors of signal–time curves of pyruvate, lactate and bicarbonate were determined to compare the two reconstruction algorithms for different undersampling factors R. Prospectively undersampled imaging at 1 × 1 × 3.5‐mm3 resolution was performed with both methods in the same animals and compared with the fully sampled acquisition. k–t SPARSE was found to perform better at R &lt; 3, but was outperformed by k–t PCA at R ≥ 4. Prospectively undersampled data were successfully reconstructed with both k–t PCA and k–t SPARSE in all subjects. No significant difference between the undersampled and fully sampled data was found in terms of signal‐to‐noise ratio (SNR) performance and metabolic quantification. Accelerated imaging with both k–t PCA and k–t SPARSE allows an increase in resolution, thereby reducing the intravoxel dephasing of hyperpolarized metabolic imaging of the rat heart. k–t principal component analysis (k–t PCA) and k–t compressed sensing (k–t SPARSE) are shown to allow an increase in the resolution of hyperpolarized metabolic imaging of the rat heart at 9.4 T by more than two‐fold relative to previous methods, thereby reducing intravoxel phase dispersion and facilitating segment‐wise analysis of metabolic ratios of the in vivo rat heart</abstract><cop>England</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29244228</pmid><doi>10.1002/nbm.3876</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-4309-445X</orcidid><orcidid>https://orcid.org/0000-0003-3916-1285</orcidid><orcidid>https://orcid.org/0000-0001-6783-3590</orcidid><orcidid>https://orcid.org/0000-0003-3725-8884</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0952-3480
ispartof NMR in biomedicine, 2018-02, Vol.31 (2), p.n/a
issn 0952-3480
1099-1492
language eng
recordid cdi_proquest_miscellaneous_1977780883
source MEDLINE; Wiley Journals
subjects accelerated imaging
Animals
Area Under Curve
Bicarbonates
Bicarbonates - metabolism
Biological products
Carbon Isotopes - metabolism
Carbonates
cardiac metabolism
Computer Simulation
Heart
hyperpolarized 13C
Image Processing, Computer-Assisted
Image resolution
k–t PCA
k–t SPARSE
Lactic acid
Lactic Acid - metabolism
Magnetic Resonance Imaging
metabolic imaging
Metabolism
Myocardium - metabolism
Principal Component Analysis
Principal components analysis
Pyruvic acid
Pyruvic Acid - metabolism
Rats
Rats, Sprague-Dawley
Signal-To-Noise Ratio
title High‐resolution hyperpolarized metabolic imaging of the rat heart using k–t PCA and k–t SPARSE
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T05%3A42%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High%E2%80%90resolution%20hyperpolarized%20metabolic%20imaging%20of%20the%20rat%20heart%20using%20k%E2%80%93t%20PCA%20and%20k%E2%80%93t%20SPARSE&rft.jtitle=NMR%20in%20biomedicine&rft.au=Wespi,%20Patrick&rft.date=2018-02&rft.volume=31&rft.issue=2&rft.epage=n/a&rft.issn=0952-3480&rft.eissn=1099-1492&rft_id=info:doi/10.1002/nbm.3876&rft_dat=%3Cproquest_cross%3E1988508532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988508532&rft_id=info:pmid/29244228&rfr_iscdi=true