The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury

Primary/secondary hyperoxalurias involve nephrocalcinosis-related chronic kidney disease (CKD) leading to end-stage kidney disease. Mechanistically, intrarenal calcium oxalate crystal deposition is thought to elicit inflammation, tubular injury and atrophy, involving the NLRP3 inflammasome. Here, we...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Kidney international 2018-03, Vol.93 (3), p.656-669
Hauptverfasser: Anders, Hans-Joachim, Suarez-Alvarez, Beatriz, Grigorescu, Melissa, Foresto-Neto, Orestes, Steiger, Stefanie, Desai, Jyaysi, Marschner, Julian A., Honarpisheh, Mohsen, Shi, Chongxu, Jordan, Jutta, Müller, Lisa, Burzlaff, Nicolai, Bäuerle, Tobias, Mulay, Shrikant R.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 669
container_issue 3
container_start_page 656
container_title Kidney international
container_volume 93
creator Anders, Hans-Joachim
Suarez-Alvarez, Beatriz
Grigorescu, Melissa
Foresto-Neto, Orestes
Steiger, Stefanie
Desai, Jyaysi
Marschner, Julian A.
Honarpisheh, Mohsen
Shi, Chongxu
Jordan, Jutta
Müller, Lisa
Burzlaff, Nicolai
Bäuerle, Tobias
Mulay, Shrikant R.
description Primary/secondary hyperoxalurias involve nephrocalcinosis-related chronic kidney disease (CKD) leading to end-stage kidney disease. Mechanistically, intrarenal calcium oxalate crystal deposition is thought to elicit inflammation, tubular injury and atrophy, involving the NLRP3 inflammasome. Here, we found that mice deficient in NLRP3 and ASC adaptor protein failed to develop nephrocalcinosis, compromising conclusions on nephrocalcinosis-related CKD. In contrast, hyperoxaluric wild-type mice developed profound nephrocalcinosis. NLRP3 inhibition using the β-hydroxybutyrate precursor 1,3-butanediol protected such mice from nephrocalcinosis-related CKD. Interestingly, the IL-1 inhibitor anakinra had no such effect, suggesting IL-1-independent functions of NLRP3. NLRP3 inhibition using 1,3-butanediol treatment induced a shift of infiltrating renal macrophages from pro-inflammatory (CD45+F4/80+CD11b+CX3CR1+CD206-) and pro-fibrotic (CD45+F4/80+CD11b+CX3CR1+CD206+TGFβ+) to an anti-inflammatory (CD45+F4/80+CD11b+CD206+TGFβ-) phenotype, and prevented renal fibrosis. Finally, in vitro studies with primary murine fibroblasts confirmed the non-redundant role of NLRP3 in the TGF-β signaling pathway for fibroblast activation and proliferation independent of the NLRP3 inflammasome complex formation. Thus, nephrocalcinosis-related CKD involves NLRP3 but not necessarily via intrarenal IL-1 release but rather via other biological functions including TGFR signaling and macrophage polarization. Hence, NLRP3 may be a promising therapeutic target in hyperoxaluria and nephrocalcinosis.
doi_str_mv 10.1016/j.kint.2017.09.022
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977779704</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S008525381730772X</els_id><sourcerecordid>2040802657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c494t-ff815837454521b313c5bafd9b6ce24040f8688649ebe629ffc65d86f0214b313</originalsourceid><addsrcrecordid>eNp9kcGO1SAYhRujca6jL-DCkLhx0woU2pK4MRMdJ7lRY8Y1ofTHS6eFCtTk7nwHH2LeyyeRekcXLmQB-cl3DuSconhKcEUwaV6O1Y11qaKYtBUWFab0XrEjnNYlaTm_X-ww7nhJed2dFY9iHHGeRY0fFmdUUEYaynbF7fUB0Kx08MtBfQG0HMD5dFwAKTcg68yk5llFPwPSfl68A5fQ-_2nj3WeXQq2XxNElDxysByC12rS1vloYxlgUgkGpPO1sxrd2MHBEQ02goqQvQdYIG_Z0AQ_o6t9SX5-_zHDYH_rko1x3bhxDcfHxQOjpghP7s7z4vPbN9cX78r9h8uri9f7UjPBUmlMR3hXt4wzTklfk1rzXplB9I0GyjDDpmu6rmECemioMEY3fOgagylhG35evDj5LsF_XSEmOduoYZqUA79GSUSbl2gxy-jzf9DRr8Hl30maH-owbXibKXqicsQxBjByCXZW4SgJlluNcpRbjXKrUWIhc41Z9OzOeu1zHn8lf3rLwKsTADmLbxaCjNqC0zm7ADrJwdv_-f8CnvOyUw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040802657</pqid></control><display><type>article</type><title>The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Alma/SFX Local Collection</source><creator>Anders, Hans-Joachim ; Suarez-Alvarez, Beatriz ; Grigorescu, Melissa ; Foresto-Neto, Orestes ; Steiger, Stefanie ; Desai, Jyaysi ; Marschner, Julian A. ; Honarpisheh, Mohsen ; Shi, Chongxu ; Jordan, Jutta ; Müller, Lisa ; Burzlaff, Nicolai ; Bäuerle, Tobias ; Mulay, Shrikant R.</creator><creatorcontrib>Anders, Hans-Joachim ; Suarez-Alvarez, Beatriz ; Grigorescu, Melissa ; Foresto-Neto, Orestes ; Steiger, Stefanie ; Desai, Jyaysi ; Marschner, Julian A. ; Honarpisheh, Mohsen ; Shi, Chongxu ; Jordan, Jutta ; Müller, Lisa ; Burzlaff, Nicolai ; Bäuerle, Tobias ; Mulay, Shrikant R.</creatorcontrib><description>Primary/secondary hyperoxalurias involve nephrocalcinosis-related chronic kidney disease (CKD) leading to end-stage kidney disease. Mechanistically, intrarenal calcium oxalate crystal deposition is thought to elicit inflammation, tubular injury and atrophy, involving the NLRP3 inflammasome. Here, we found that mice deficient in NLRP3 and ASC adaptor protein failed to develop nephrocalcinosis, compromising conclusions on nephrocalcinosis-related CKD. In contrast, hyperoxaluric wild-type mice developed profound nephrocalcinosis. NLRP3 inhibition using the β-hydroxybutyrate precursor 1,3-butanediol protected such mice from nephrocalcinosis-related CKD. Interestingly, the IL-1 inhibitor anakinra had no such effect, suggesting IL-1-independent functions of NLRP3. NLRP3 inhibition using 1,3-butanediol treatment induced a shift of infiltrating renal macrophages from pro-inflammatory (CD45+F4/80+CD11b+CX3CR1+CD206-) and pro-fibrotic (CD45+F4/80+CD11b+CX3CR1+CD206+TGFβ+) to an anti-inflammatory (CD45+F4/80+CD11b+CD206+TGFβ-) phenotype, and prevented renal fibrosis. Finally, in vitro studies with primary murine fibroblasts confirmed the non-redundant role of NLRP3 in the TGF-β signaling pathway for fibroblast activation and proliferation independent of the NLRP3 inflammasome complex formation. Thus, nephrocalcinosis-related CKD involves NLRP3 but not necessarily via intrarenal IL-1 release but rather via other biological functions including TGFR signaling and macrophage polarization. Hence, NLRP3 may be a promising therapeutic target in hyperoxaluria and nephrocalcinosis.</description><identifier>ISSN: 0085-2538</identifier><identifier>EISSN: 1523-1755</identifier><identifier>DOI: 10.1016/j.kint.2017.09.022</identifier><identifier>PMID: 29241624</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Animals ; Atrophy ; beta-hydroxybutyrate ; Butylene Glycols - pharmacology ; Calcinosis ; Calcium oxalate ; CARD Signaling Adaptor Proteins - genetics ; CARD Signaling Adaptor Proteins - metabolism ; CD11b antigen ; CD45 antigen ; Cell Plasticity - drug effects ; Cells, Cultured ; crystal nephropathy ; CX3CR1 protein ; Disease Models, Animal ; End-stage renal disease ; Female ; Fibroblasts ; Fibroblasts - immunology ; Fibroblasts - metabolism ; Fibroblasts - pathology ; Fibrosis ; Hyperoxaluria ; Hyperoxaluria - drug therapy ; Hyperoxaluria - immunology ; Hyperoxaluria - metabolism ; Hyperoxaluria - pathology ; Inflammasomes ; Inflammasomes - drug effects ; Inflammasomes - genetics ; Inflammasomes - immunology ; Inflammasomes - metabolism ; Inflammation ; Interleukin 1 ; Interleukin 1 receptor antagonist ; Interleukin-1 - immunology ; Interleukin-1 - metabolism ; Kidney - immunology ; Kidney - metabolism ; Kidney - pathology ; Kidney diseases ; Macrophages ; Macrophages - drug effects ; Macrophages - immunology ; Macrophages - metabolism ; Macrophages - pathology ; Male ; Mice, Inbred C57BL ; Mice, Knockout ; NALP3 ; necroinflammation ; Nephrocalcinosis - immunology ; Nephrocalcinosis - metabolism ; Nephrocalcinosis - pathology ; Nephrocalcinosis - prevention &amp; control ; NLR Family, Pyrin Domain-Containing 3 Protein - antagonists &amp; inhibitors ; NLR Family, Pyrin Domain-Containing 3 Protein - genetics ; NLR Family, Pyrin Domain-Containing 3 Protein - immunology ; NLR Family, Pyrin Domain-Containing 3 Protein - metabolism ; Oxalic acid ; Phenotype ; Phenotypes ; Receptors, Transforming Growth Factor beta - metabolism ; Renal Insufficiency, Chronic - immunology ; Renal Insufficiency, Chronic - metabolism ; Renal Insufficiency, Chronic - pathology ; Renal Insufficiency, Chronic - prevention &amp; control ; Signal Transduction ; Therapeutic applications</subject><ispartof>Kidney international, 2018-03, Vol.93 (3), p.656-669</ispartof><rights>2017 International Society of Nephrology</rights><rights>Copyright © 2017 International Society of Nephrology. Published by Elsevier Inc. All rights reserved.</rights><rights>Copyright Elsevier Limited Mar 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c494t-ff815837454521b313c5bafd9b6ce24040f8688649ebe629ffc65d86f0214b313</citedby><cites>FETCH-LOGICAL-c494t-ff815837454521b313c5bafd9b6ce24040f8688649ebe629ffc65d86f0214b313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29241624$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Anders, Hans-Joachim</creatorcontrib><creatorcontrib>Suarez-Alvarez, Beatriz</creatorcontrib><creatorcontrib>Grigorescu, Melissa</creatorcontrib><creatorcontrib>Foresto-Neto, Orestes</creatorcontrib><creatorcontrib>Steiger, Stefanie</creatorcontrib><creatorcontrib>Desai, Jyaysi</creatorcontrib><creatorcontrib>Marschner, Julian A.</creatorcontrib><creatorcontrib>Honarpisheh, Mohsen</creatorcontrib><creatorcontrib>Shi, Chongxu</creatorcontrib><creatorcontrib>Jordan, Jutta</creatorcontrib><creatorcontrib>Müller, Lisa</creatorcontrib><creatorcontrib>Burzlaff, Nicolai</creatorcontrib><creatorcontrib>Bäuerle, Tobias</creatorcontrib><creatorcontrib>Mulay, Shrikant R.</creatorcontrib><title>The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury</title><title>Kidney international</title><addtitle>Kidney Int</addtitle><description>Primary/secondary hyperoxalurias involve nephrocalcinosis-related chronic kidney disease (CKD) leading to end-stage kidney disease. Mechanistically, intrarenal calcium oxalate crystal deposition is thought to elicit inflammation, tubular injury and atrophy, involving the NLRP3 inflammasome. Here, we found that mice deficient in NLRP3 and ASC adaptor protein failed to develop nephrocalcinosis, compromising conclusions on nephrocalcinosis-related CKD. In contrast, hyperoxaluric wild-type mice developed profound nephrocalcinosis. NLRP3 inhibition using the β-hydroxybutyrate precursor 1,3-butanediol protected such mice from nephrocalcinosis-related CKD. Interestingly, the IL-1 inhibitor anakinra had no such effect, suggesting IL-1-independent functions of NLRP3. NLRP3 inhibition using 1,3-butanediol treatment induced a shift of infiltrating renal macrophages from pro-inflammatory (CD45+F4/80+CD11b+CX3CR1+CD206-) and pro-fibrotic (CD45+F4/80+CD11b+CX3CR1+CD206+TGFβ+) to an anti-inflammatory (CD45+F4/80+CD11b+CD206+TGFβ-) phenotype, and prevented renal fibrosis. Finally, in vitro studies with primary murine fibroblasts confirmed the non-redundant role of NLRP3 in the TGF-β signaling pathway for fibroblast activation and proliferation independent of the NLRP3 inflammasome complex formation. Thus, nephrocalcinosis-related CKD involves NLRP3 but not necessarily via intrarenal IL-1 release but rather via other biological functions including TGFR signaling and macrophage polarization. Hence, NLRP3 may be a promising therapeutic target in hyperoxaluria and nephrocalcinosis.</description><subject>Animals</subject><subject>Atrophy</subject><subject>beta-hydroxybutyrate</subject><subject>Butylene Glycols - pharmacology</subject><subject>Calcinosis</subject><subject>Calcium oxalate</subject><subject>CARD Signaling Adaptor Proteins - genetics</subject><subject>CARD Signaling Adaptor Proteins - metabolism</subject><subject>CD11b antigen</subject><subject>CD45 antigen</subject><subject>Cell Plasticity - drug effects</subject><subject>Cells, Cultured</subject><subject>crystal nephropathy</subject><subject>CX3CR1 protein</subject><subject>Disease Models, Animal</subject><subject>End-stage renal disease</subject><subject>Female</subject><subject>Fibroblasts</subject><subject>Fibroblasts - immunology</subject><subject>Fibroblasts - metabolism</subject><subject>Fibroblasts - pathology</subject><subject>Fibrosis</subject><subject>Hyperoxaluria</subject><subject>Hyperoxaluria - drug therapy</subject><subject>Hyperoxaluria - immunology</subject><subject>Hyperoxaluria - metabolism</subject><subject>Hyperoxaluria - pathology</subject><subject>Inflammasomes</subject><subject>Inflammasomes - drug effects</subject><subject>Inflammasomes - genetics</subject><subject>Inflammasomes - immunology</subject><subject>Inflammasomes - metabolism</subject><subject>Inflammation</subject><subject>Interleukin 1</subject><subject>Interleukin 1 receptor antagonist</subject><subject>Interleukin-1 - immunology</subject><subject>Interleukin-1 - metabolism</subject><subject>Kidney - immunology</subject><subject>Kidney - metabolism</subject><subject>Kidney - pathology</subject><subject>Kidney diseases</subject><subject>Macrophages</subject><subject>Macrophages - drug effects</subject><subject>Macrophages - immunology</subject><subject>Macrophages - metabolism</subject><subject>Macrophages - pathology</subject><subject>Male</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>NALP3</subject><subject>necroinflammation</subject><subject>Nephrocalcinosis - immunology</subject><subject>Nephrocalcinosis - metabolism</subject><subject>Nephrocalcinosis - pathology</subject><subject>Nephrocalcinosis - prevention &amp; control</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - antagonists &amp; inhibitors</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - immunology</subject><subject>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</subject><subject>Oxalic acid</subject><subject>Phenotype</subject><subject>Phenotypes</subject><subject>Receptors, Transforming Growth Factor beta - metabolism</subject><subject>Renal Insufficiency, Chronic - immunology</subject><subject>Renal Insufficiency, Chronic - metabolism</subject><subject>Renal Insufficiency, Chronic - pathology</subject><subject>Renal Insufficiency, Chronic - prevention &amp; control</subject><subject>Signal Transduction</subject><subject>Therapeutic applications</subject><issn>0085-2538</issn><issn>1523-1755</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcGO1SAYhRujca6jL-DCkLhx0woU2pK4MRMdJ7lRY8Y1ofTHS6eFCtTk7nwHH2LeyyeRekcXLmQB-cl3DuSconhKcEUwaV6O1Y11qaKYtBUWFab0XrEjnNYlaTm_X-ww7nhJed2dFY9iHHGeRY0fFmdUUEYaynbF7fUB0Kx08MtBfQG0HMD5dFwAKTcg68yk5llFPwPSfl68A5fQ-_2nj3WeXQq2XxNElDxysByC12rS1vloYxlgUgkGpPO1sxrd2MHBEQ02goqQvQdYIG_Z0AQ_o6t9SX5-_zHDYH_rko1x3bhxDcfHxQOjpghP7s7z4vPbN9cX78r9h8uri9f7UjPBUmlMR3hXt4wzTklfk1rzXplB9I0GyjDDpmu6rmECemioMEY3fOgagylhG35evDj5LsF_XSEmOduoYZqUA79GSUSbl2gxy-jzf9DRr8Hl30maH-owbXibKXqicsQxBjByCXZW4SgJlluNcpRbjXKrUWIhc41Z9OzOeu1zHn8lf3rLwKsTADmLbxaCjNqC0zm7ADrJwdv_-f8CnvOyUw</recordid><startdate>201803</startdate><enddate>201803</enddate><creator>Anders, Hans-Joachim</creator><creator>Suarez-Alvarez, Beatriz</creator><creator>Grigorescu, Melissa</creator><creator>Foresto-Neto, Orestes</creator><creator>Steiger, Stefanie</creator><creator>Desai, Jyaysi</creator><creator>Marschner, Julian A.</creator><creator>Honarpisheh, Mohsen</creator><creator>Shi, Chongxu</creator><creator>Jordan, Jutta</creator><creator>Müller, Lisa</creator><creator>Burzlaff, Nicolai</creator><creator>Bäuerle, Tobias</creator><creator>Mulay, Shrikant R.</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7X8</scope></search><sort><creationdate>201803</creationdate><title>The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury</title><author>Anders, Hans-Joachim ; Suarez-Alvarez, Beatriz ; Grigorescu, Melissa ; Foresto-Neto, Orestes ; Steiger, Stefanie ; Desai, Jyaysi ; Marschner, Julian A. ; Honarpisheh, Mohsen ; Shi, Chongxu ; Jordan, Jutta ; Müller, Lisa ; Burzlaff, Nicolai ; Bäuerle, Tobias ; Mulay, Shrikant R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c494t-ff815837454521b313c5bafd9b6ce24040f8688649ebe629ffc65d86f0214b313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Atrophy</topic><topic>beta-hydroxybutyrate</topic><topic>Butylene Glycols - pharmacology</topic><topic>Calcinosis</topic><topic>Calcium oxalate</topic><topic>CARD Signaling Adaptor Proteins - genetics</topic><topic>CARD Signaling Adaptor Proteins - metabolism</topic><topic>CD11b antigen</topic><topic>CD45 antigen</topic><topic>Cell Plasticity - drug effects</topic><topic>Cells, Cultured</topic><topic>crystal nephropathy</topic><topic>CX3CR1 protein</topic><topic>Disease Models, Animal</topic><topic>End-stage renal disease</topic><topic>Female</topic><topic>Fibroblasts</topic><topic>Fibroblasts - immunology</topic><topic>Fibroblasts - metabolism</topic><topic>Fibroblasts - pathology</topic><topic>Fibrosis</topic><topic>Hyperoxaluria</topic><topic>Hyperoxaluria - drug therapy</topic><topic>Hyperoxaluria - immunology</topic><topic>Hyperoxaluria - metabolism</topic><topic>Hyperoxaluria - pathology</topic><topic>Inflammasomes</topic><topic>Inflammasomes - drug effects</topic><topic>Inflammasomes - genetics</topic><topic>Inflammasomes - immunology</topic><topic>Inflammasomes - metabolism</topic><topic>Inflammation</topic><topic>Interleukin 1</topic><topic>Interleukin 1 receptor antagonist</topic><topic>Interleukin-1 - immunology</topic><topic>Interleukin-1 - metabolism</topic><topic>Kidney - immunology</topic><topic>Kidney - metabolism</topic><topic>Kidney - pathology</topic><topic>Kidney diseases</topic><topic>Macrophages</topic><topic>Macrophages - drug effects</topic><topic>Macrophages - immunology</topic><topic>Macrophages - metabolism</topic><topic>Macrophages - pathology</topic><topic>Male</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>NALP3</topic><topic>necroinflammation</topic><topic>Nephrocalcinosis - immunology</topic><topic>Nephrocalcinosis - metabolism</topic><topic>Nephrocalcinosis - pathology</topic><topic>Nephrocalcinosis - prevention &amp; control</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - antagonists &amp; inhibitors</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - genetics</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - immunology</topic><topic>NLR Family, Pyrin Domain-Containing 3 Protein - metabolism</topic><topic>Oxalic acid</topic><topic>Phenotype</topic><topic>Phenotypes</topic><topic>Receptors, Transforming Growth Factor beta - metabolism</topic><topic>Renal Insufficiency, Chronic - immunology</topic><topic>Renal Insufficiency, Chronic - metabolism</topic><topic>Renal Insufficiency, Chronic - pathology</topic><topic>Renal Insufficiency, Chronic - prevention &amp; control</topic><topic>Signal Transduction</topic><topic>Therapeutic applications</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Anders, Hans-Joachim</creatorcontrib><creatorcontrib>Suarez-Alvarez, Beatriz</creatorcontrib><creatorcontrib>Grigorescu, Melissa</creatorcontrib><creatorcontrib>Foresto-Neto, Orestes</creatorcontrib><creatorcontrib>Steiger, Stefanie</creatorcontrib><creatorcontrib>Desai, Jyaysi</creatorcontrib><creatorcontrib>Marschner, Julian A.</creatorcontrib><creatorcontrib>Honarpisheh, Mohsen</creatorcontrib><creatorcontrib>Shi, Chongxu</creatorcontrib><creatorcontrib>Jordan, Jutta</creatorcontrib><creatorcontrib>Müller, Lisa</creatorcontrib><creatorcontrib>Burzlaff, Nicolai</creatorcontrib><creatorcontrib>Bäuerle, Tobias</creatorcontrib><creatorcontrib>Mulay, Shrikant R.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>MEDLINE - Academic</collection><jtitle>Kidney international</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Anders, Hans-Joachim</au><au>Suarez-Alvarez, Beatriz</au><au>Grigorescu, Melissa</au><au>Foresto-Neto, Orestes</au><au>Steiger, Stefanie</au><au>Desai, Jyaysi</au><au>Marschner, Julian A.</au><au>Honarpisheh, Mohsen</au><au>Shi, Chongxu</au><au>Jordan, Jutta</au><au>Müller, Lisa</au><au>Burzlaff, Nicolai</au><au>Bäuerle, Tobias</au><au>Mulay, Shrikant R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury</atitle><jtitle>Kidney international</jtitle><addtitle>Kidney Int</addtitle><date>2018-03</date><risdate>2018</risdate><volume>93</volume><issue>3</issue><spage>656</spage><epage>669</epage><pages>656-669</pages><issn>0085-2538</issn><eissn>1523-1755</eissn><abstract>Primary/secondary hyperoxalurias involve nephrocalcinosis-related chronic kidney disease (CKD) leading to end-stage kidney disease. Mechanistically, intrarenal calcium oxalate crystal deposition is thought to elicit inflammation, tubular injury and atrophy, involving the NLRP3 inflammasome. Here, we found that mice deficient in NLRP3 and ASC adaptor protein failed to develop nephrocalcinosis, compromising conclusions on nephrocalcinosis-related CKD. In contrast, hyperoxaluric wild-type mice developed profound nephrocalcinosis. NLRP3 inhibition using the β-hydroxybutyrate precursor 1,3-butanediol protected such mice from nephrocalcinosis-related CKD. Interestingly, the IL-1 inhibitor anakinra had no such effect, suggesting IL-1-independent functions of NLRP3. NLRP3 inhibition using 1,3-butanediol treatment induced a shift of infiltrating renal macrophages from pro-inflammatory (CD45+F4/80+CD11b+CX3CR1+CD206-) and pro-fibrotic (CD45+F4/80+CD11b+CX3CR1+CD206+TGFβ+) to an anti-inflammatory (CD45+F4/80+CD11b+CD206+TGFβ-) phenotype, and prevented renal fibrosis. Finally, in vitro studies with primary murine fibroblasts confirmed the non-redundant role of NLRP3 in the TGF-β signaling pathway for fibroblast activation and proliferation independent of the NLRP3 inflammasome complex formation. Thus, nephrocalcinosis-related CKD involves NLRP3 but not necessarily via intrarenal IL-1 release but rather via other biological functions including TGFR signaling and macrophage polarization. Hence, NLRP3 may be a promising therapeutic target in hyperoxaluria and nephrocalcinosis.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>29241624</pmid><doi>10.1016/j.kint.2017.09.022</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0085-2538
ispartof Kidney international, 2018-03, Vol.93 (3), p.656-669
issn 0085-2538
1523-1755
language eng
recordid cdi_proquest_miscellaneous_1977779704
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Alma/SFX Local Collection
subjects Animals
Atrophy
beta-hydroxybutyrate
Butylene Glycols - pharmacology
Calcinosis
Calcium oxalate
CARD Signaling Adaptor Proteins - genetics
CARD Signaling Adaptor Proteins - metabolism
CD11b antigen
CD45 antigen
Cell Plasticity - drug effects
Cells, Cultured
crystal nephropathy
CX3CR1 protein
Disease Models, Animal
End-stage renal disease
Female
Fibroblasts
Fibroblasts - immunology
Fibroblasts - metabolism
Fibroblasts - pathology
Fibrosis
Hyperoxaluria
Hyperoxaluria - drug therapy
Hyperoxaluria - immunology
Hyperoxaluria - metabolism
Hyperoxaluria - pathology
Inflammasomes
Inflammasomes - drug effects
Inflammasomes - genetics
Inflammasomes - immunology
Inflammasomes - metabolism
Inflammation
Interleukin 1
Interleukin 1 receptor antagonist
Interleukin-1 - immunology
Interleukin-1 - metabolism
Kidney - immunology
Kidney - metabolism
Kidney - pathology
Kidney diseases
Macrophages
Macrophages - drug effects
Macrophages - immunology
Macrophages - metabolism
Macrophages - pathology
Male
Mice, Inbred C57BL
Mice, Knockout
NALP3
necroinflammation
Nephrocalcinosis - immunology
Nephrocalcinosis - metabolism
Nephrocalcinosis - pathology
Nephrocalcinosis - prevention & control
NLR Family, Pyrin Domain-Containing 3 Protein - antagonists & inhibitors
NLR Family, Pyrin Domain-Containing 3 Protein - genetics
NLR Family, Pyrin Domain-Containing 3 Protein - immunology
NLR Family, Pyrin Domain-Containing 3 Protein - metabolism
Oxalic acid
Phenotype
Phenotypes
Receptors, Transforming Growth Factor beta - metabolism
Renal Insufficiency, Chronic - immunology
Renal Insufficiency, Chronic - metabolism
Renal Insufficiency, Chronic - pathology
Renal Insufficiency, Chronic - prevention & control
Signal Transduction
Therapeutic applications
title The macrophage phenotype and inflammasome component NLRP3 contributes to nephrocalcinosis-related chronic kidney disease independent from IL-1–mediated tissue injury
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T09%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20macrophage%20phenotype%20and%20inflammasome%20component%20NLRP3%20contributes%20to%20nephrocalcinosis-related%20chronic%20kidney%20disease%20independent%20from%20IL-1%E2%80%93mediated%20tissue%20injury&rft.jtitle=Kidney%20international&rft.au=Anders,%20Hans-Joachim&rft.date=2018-03&rft.volume=93&rft.issue=3&rft.spage=656&rft.epage=669&rft.pages=656-669&rft.issn=0085-2538&rft.eissn=1523-1755&rft_id=info:doi/10.1016/j.kint.2017.09.022&rft_dat=%3Cproquest_cross%3E2040802657%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040802657&rft_id=info:pmid/29241624&rft_els_id=S008525381730772X&rfr_iscdi=true