Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase
In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking...
Gespeichert in:
Veröffentlicht in: | Journal of agricultural and food chemistry 2018-01, Vol.66 (1), p.238-246 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 246 |
---|---|
container_issue | 1 |
container_start_page | 238 |
container_title | Journal of agricultural and food chemistry |
container_volume | 66 |
creator | Fan, Linlin Xie, Pujun Wang, Ying Huang, Zisu Zhou, Jianzhong |
description | In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant. |
doi_str_mv | 10.1021/acs.jafc.7b04469 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977125383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977125383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EouWyM6GMDKTYsePEbFBxk4pggDlynGPhKrWLnQzd-gqIN-FBeIg-CYYWNqbjY33_L50PoSOCRwRn5EyqMJpKrUZFjRnjYgsNSZ7hNCek3EZDHJm0zDkZoL0QphjjMi_wLhpkIqOCYz5EzaVxofdaqk7abrV8f_SuA2OTO9uBj7_G2fO46LYHqyAkTif30loXFi34RffiTefaZGLmpgmr5dtF4mzy-RFfN22vXDCNDHCAdrRsAxxu5j56vr56Gt-mk4ebu_HFJJWU8i6VpVa41lRprkQtmJQMMNcAOWcqo6RseC00A0oLASJnWhdUYs4VkIzxktF9dLLunXv32kPoqpkJCtpWWnB9qIgoCpLltKQRxWtUeReCB13NvZlJv6gIrr7dVtFt9e222riNkeNNe1_PoPkL_MqMwOka-Im63tt47P99X2KRivk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977125383</pqid></control><display><type>article</type><title>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</title><source>ACS Publications</source><creator>Fan, Linlin ; Xie, Pujun ; Wang, Ying ; Huang, Zisu ; Zhou, Jianzhong</creator><creatorcontrib>Fan, Linlin ; Xie, Pujun ; Wang, Ying ; Huang, Zisu ; Zhou, Jianzhong</creatorcontrib><description>In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.7b04469</identifier><identifier>PMID: 29239606</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of agricultural and food chemistry, 2018-01, Vol.66 (1), p.238-246</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</citedby><cites>FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</cites><orcidid>0000-0001-6975-0908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.7b04469$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.7b04469$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29239606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Linlin</creatorcontrib><creatorcontrib>Xie, Pujun</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Huang, Zisu</creatorcontrib><creatorcontrib>Zhou, Jianzhong</creatorcontrib><title>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.</description><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EouWyM6GMDKTYsePEbFBxk4pggDlynGPhKrWLnQzd-gqIN-FBeIg-CYYWNqbjY33_L50PoSOCRwRn5EyqMJpKrUZFjRnjYgsNSZ7hNCek3EZDHJm0zDkZoL0QphjjMi_wLhpkIqOCYz5EzaVxofdaqk7abrV8f_SuA2OTO9uBj7_G2fO46LYHqyAkTif30loXFi34RffiTefaZGLmpgmr5dtF4mzy-RFfN22vXDCNDHCAdrRsAxxu5j56vr56Gt-mk4ebu_HFJJWU8i6VpVa41lRprkQtmJQMMNcAOWcqo6RseC00A0oLASJnWhdUYs4VkIzxktF9dLLunXv32kPoqpkJCtpWWnB9qIgoCpLltKQRxWtUeReCB13NvZlJv6gIrr7dVtFt9e222riNkeNNe1_PoPkL_MqMwOka-Im63tt47P99X2KRivk</recordid><startdate>20180110</startdate><enddate>20180110</enddate><creator>Fan, Linlin</creator><creator>Xie, Pujun</creator><creator>Wang, Ying</creator><creator>Huang, Zisu</creator><creator>Zhou, Jianzhong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6975-0908</orcidid></search><sort><creationdate>20180110</creationdate><title>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</title><author>Fan, Linlin ; Xie, Pujun ; Wang, Ying ; Huang, Zisu ; Zhou, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Linlin</creatorcontrib><creatorcontrib>Xie, Pujun</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Huang, Zisu</creatorcontrib><creatorcontrib>Zhou, Jianzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Linlin</au><au>Xie, Pujun</au><au>Wang, Ying</au><au>Huang, Zisu</au><au>Zhou, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2018-01-10</date><risdate>2018</risdate><volume>66</volume><issue>1</issue><spage>238</spage><epage>246</epage><pages>238-246</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29239606</pmid><doi>10.1021/acs.jafc.7b04469</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6975-0908</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-8561 |
ispartof | Journal of agricultural and food chemistry, 2018-01, Vol.66 (1), p.238-246 |
issn | 0021-8561 1520-5118 |
language | eng |
recordid | cdi_proquest_miscellaneous_1977125383 |
source | ACS Publications |
title | Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosurfactant%E2%80%93Protein%20Interaction:%20Influences%20of%20Mannosylerythritol%20Lipids%E2%80%91A%20on%20%CE%B2%E2%80%91Glucosidase&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Fan,%20Linlin&rft.date=2018-01-10&rft.volume=66&rft.issue=1&rft.spage=238&rft.epage=246&rft.pages=238-246&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.7b04469&rft_dat=%3Cproquest_cross%3E1977125383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977125383&rft_id=info:pmid/29239606&rfr_iscdi=true |