Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase

In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of agricultural and food chemistry 2018-01, Vol.66 (1), p.238-246
Hauptverfasser: Fan, Linlin, Xie, Pujun, Wang, Ying, Huang, Zisu, Zhou, Jianzhong
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 246
container_issue 1
container_start_page 238
container_title Journal of agricultural and food chemistry
container_volume 66
creator Fan, Linlin
Xie, Pujun
Wang, Ying
Huang, Zisu
Zhou, Jianzhong
description In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (< critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.
doi_str_mv 10.1021/acs.jafc.7b04469
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1977125383</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1977125383</sourcerecordid><originalsourceid>FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</originalsourceid><addsrcrecordid>eNp1kLtOwzAUhi0EouWyM6GMDKTYsePEbFBxk4pggDlynGPhKrWLnQzd-gqIN-FBeIg-CYYWNqbjY33_L50PoSOCRwRn5EyqMJpKrUZFjRnjYgsNSZ7hNCek3EZDHJm0zDkZoL0QphjjMi_wLhpkIqOCYz5EzaVxofdaqk7abrV8f_SuA2OTO9uBj7_G2fO46LYHqyAkTif30loXFi34RffiTefaZGLmpgmr5dtF4mzy-RFfN22vXDCNDHCAdrRsAxxu5j56vr56Gt-mk4ebu_HFJJWU8i6VpVa41lRprkQtmJQMMNcAOWcqo6RseC00A0oLASJnWhdUYs4VkIzxktF9dLLunXv32kPoqpkJCtpWWnB9qIgoCpLltKQRxWtUeReCB13NvZlJv6gIrr7dVtFt9e222riNkeNNe1_PoPkL_MqMwOka-Im63tt47P99X2KRivk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1977125383</pqid></control><display><type>article</type><title>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</title><source>ACS Publications</source><creator>Fan, Linlin ; Xie, Pujun ; Wang, Ying ; Huang, Zisu ; Zhou, Jianzhong</creator><creatorcontrib>Fan, Linlin ; Xie, Pujun ; Wang, Ying ; Huang, Zisu ; Zhou, Jianzhong</creatorcontrib><description>In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (&lt; critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.</description><identifier>ISSN: 0021-8561</identifier><identifier>EISSN: 1520-5118</identifier><identifier>DOI: 10.1021/acs.jafc.7b04469</identifier><identifier>PMID: 29239606</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><ispartof>Journal of agricultural and food chemistry, 2018-01, Vol.66 (1), p.238-246</ispartof><rights>Copyright © 2017 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</citedby><cites>FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</cites><orcidid>0000-0001-6975-0908</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/acs.jafc.7b04469$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/acs.jafc.7b04469$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>314,777,781,2752,27057,27905,27906,56719,56769</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29239606$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fan, Linlin</creatorcontrib><creatorcontrib>Xie, Pujun</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Huang, Zisu</creatorcontrib><creatorcontrib>Zhou, Jianzhong</creatorcontrib><title>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</title><title>Journal of agricultural and food chemistry</title><addtitle>J. Agric. Food Chem</addtitle><description>In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (&lt; critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.</description><issn>0021-8561</issn><issn>1520-5118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNp1kLtOwzAUhi0EouWyM6GMDKTYsePEbFBxk4pggDlynGPhKrWLnQzd-gqIN-FBeIg-CYYWNqbjY33_L50PoSOCRwRn5EyqMJpKrUZFjRnjYgsNSZ7hNCek3EZDHJm0zDkZoL0QphjjMi_wLhpkIqOCYz5EzaVxofdaqk7abrV8f_SuA2OTO9uBj7_G2fO46LYHqyAkTif30loXFi34RffiTefaZGLmpgmr5dtF4mzy-RFfN22vXDCNDHCAdrRsAxxu5j56vr56Gt-mk4ebu_HFJJWU8i6VpVa41lRprkQtmJQMMNcAOWcqo6RseC00A0oLASJnWhdUYs4VkIzxktF9dLLunXv32kPoqpkJCtpWWnB9qIgoCpLltKQRxWtUeReCB13NvZlJv6gIrr7dVtFt9e222riNkeNNe1_PoPkL_MqMwOka-Im63tt47P99X2KRivk</recordid><startdate>20180110</startdate><enddate>20180110</enddate><creator>Fan, Linlin</creator><creator>Xie, Pujun</creator><creator>Wang, Ying</creator><creator>Huang, Zisu</creator><creator>Zhou, Jianzhong</creator><general>American Chemical Society</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6975-0908</orcidid></search><sort><creationdate>20180110</creationdate><title>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</title><author>Fan, Linlin ; Xie, Pujun ; Wang, Ying ; Huang, Zisu ; Zhou, Jianzhong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a336t-a8fc0bf3cf6c9b94aa4e06fee564c2318d6b9f4e3379e954ff73a066ce1246843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fan, Linlin</creatorcontrib><creatorcontrib>Xie, Pujun</creatorcontrib><creatorcontrib>Wang, Ying</creatorcontrib><creatorcontrib>Huang, Zisu</creatorcontrib><creatorcontrib>Zhou, Jianzhong</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of agricultural and food chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fan, Linlin</au><au>Xie, Pujun</au><au>Wang, Ying</au><au>Huang, Zisu</au><au>Zhou, Jianzhong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase</atitle><jtitle>Journal of agricultural and food chemistry</jtitle><addtitle>J. Agric. Food Chem</addtitle><date>2018-01-10</date><risdate>2018</risdate><volume>66</volume><issue>1</issue><spage>238</spage><epage>246</epage><pages>238-246</pages><issn>0021-8561</issn><eissn>1520-5118</eissn><abstract>In this work, the influences of a biosurfactant, mannosylerythritol lipids-A (MEL-A) toward β-glucosidase activity and their molecular interactions were studied by using differential scanning calorimetry (DSC), circular dichroism spectroscopy (CD), isothermal titration calorimetry (ITC), and docking simulation. The enzyme inhibition kinetics data showed that MEL-A at a low concentration (&lt; critical micelle concentration (CMC), 20.0 ± 5.0 μM) enhanced β-glucosidase activity, whereas it inhibited the enzyme activity at higher concentrations more than 20.0 μM, followed by a decreased V max and K m of β-glucosidase. The thermodynamics and structural data demonstrated that the midpoint temperature (T m) and unfolding enthalpy (Δ H ) of β-glucosidase was shifted to high values (76.6 °C, 126.3 J/g) in the presence of MEL-A, and the secondary structure changes of β-glucosidase, including the increased α-helix, β-turn, or random coil contents, and a decreased β-sheet content were caused by MEL-A at a CMC concentration. The further ITC and docking simulations suggested the bindings of MEL-A toward β-glucosidase were driven by weak hydrophobic interactions happened between the amino acid residues of β-glucosidase and the fatty acid residues of MEL-A, in addition to hydrogen bonds between amino acids and hydroxyl in glycosyl residues of this biosurfactant.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>29239606</pmid><doi>10.1021/acs.jafc.7b04469</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0001-6975-0908</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0021-8561
ispartof Journal of agricultural and food chemistry, 2018-01, Vol.66 (1), p.238-246
issn 0021-8561
1520-5118
language eng
recordid cdi_proquest_miscellaneous_1977125383
source ACS Publications
title Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids‑A on β‑Glucosidase
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-20T19%3A44%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biosurfactant%E2%80%93Protein%20Interaction:%20Influences%20of%20Mannosylerythritol%20Lipids%E2%80%91A%20on%20%CE%B2%E2%80%91Glucosidase&rft.jtitle=Journal%20of%20agricultural%20and%20food%20chemistry&rft.au=Fan,%20Linlin&rft.date=2018-01-10&rft.volume=66&rft.issue=1&rft.spage=238&rft.epage=246&rft.pages=238-246&rft.issn=0021-8561&rft.eissn=1520-5118&rft_id=info:doi/10.1021/acs.jafc.7b04469&rft_dat=%3Cproquest_cross%3E1977125383%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1977125383&rft_id=info:pmid/29239606&rfr_iscdi=true