Molecular simulations of metal adsorption to bacterial surfaces

The atomic-scale interactions that occur between cations and the metal-binding cell wall components common to many gram-positive bacteria were investigated using molecular simulations techniques. We examined the adsorption of Cd and Pb onto peptidoglycan and teichoic acid components of the bacterial...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Geochimica et cosmochimica acta 2006-10, Vol.70 (20), p.5075-5088
Hauptverfasser: Johnson, Kelly J., Cygan, Randall T., Fein, Jeremy B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 5088
container_issue 20
container_start_page 5075
container_title Geochimica et cosmochimica acta
container_volume 70
creator Johnson, Kelly J.
Cygan, Randall T.
Fein, Jeremy B.
description The atomic-scale interactions that occur between cations and the metal-binding cell wall components common to many gram-positive bacteria were investigated using molecular simulations techniques. We examined the adsorption of Cd and Pb onto peptidoglycan and teichoic acid components of the bacterial cell wall using classical energy force field methods. Within the framework of molecular mechanics and the Cerius 2 modeling software, we used energy minimization, conformational analysis, and molecular dynamics to examine the different components of the cell wall and to determine relative binding energies and structural configurations of the cell wall components, both with and without the metals present. Electronic structure calculations of representative metal–organic complexes validate the more practical classical methods required in simulating the large number of atoms associated with the cell wall components. The classical force field simulations were conducted in both gas phase and solvated periodic cells. Force field-based simulation techniques can adequately describe the interactions of Cd with the cell wall, defining both metal ion coordinations and binding distances. However, the classical force field approach is inconsistent in describing the observed Pb–cell wall interactions due to possible limitations in the force field parameters, the propensity for Pb to form hydroxides at circumneutral pH, or the dominance of other adsorption mechanisms.
doi_str_mv 10.1016/j.gca.2006.07.028
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19770210</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001670370601903X</els_id><sourcerecordid>19770210</sourcerecordid><originalsourceid>FETCH-LOGICAL-a351t-80b1c9e61dc9373072ef679ad7df6f042e0bfd9e355c4dd59c7b6875c7d72c153</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOD5-gLuu3LXeNJPeFhcigy8YcaPrkCY3kqGdjEkr-O_NMK5dHTic78L9GLviUHHgzc2m-jS6qgGaCrCCuj1iC95iXXZSiGO2gDwqEQSesrOUNgCAUsKC3b2Ggcw86FgkP-acfNimIrhipEkPhbYpxN2-LKZQ9NpMFH3u0xydNpQu2InTQ6LLvzxnH48P76vncv329LK6X5daSD6VLfTcdNRwazqBArAm12CnLVrXOFjWBL2zHQkpzdJa2RnsmxalQYu14VKcs-vD3V0MXzOlSY0-GRoGvaUwJ8U7RKg55CE_DE0MKUVyahf9qOOP4qD2qtRGZVVqr0oBqqwqM7cHhvIH356iSsbT1pD1kcykbPD_0L-ZmnHO</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19770210</pqid></control><display><type>article</type><title>Molecular simulations of metal adsorption to bacterial surfaces</title><source>Access via ScienceDirect (Elsevier)</source><creator>Johnson, Kelly J. ; Cygan, Randall T. ; Fein, Jeremy B.</creator><creatorcontrib>Johnson, Kelly J. ; Cygan, Randall T. ; Fein, Jeremy B.</creatorcontrib><description>The atomic-scale interactions that occur between cations and the metal-binding cell wall components common to many gram-positive bacteria were investigated using molecular simulations techniques. We examined the adsorption of Cd and Pb onto peptidoglycan and teichoic acid components of the bacterial cell wall using classical energy force field methods. Within the framework of molecular mechanics and the Cerius 2 modeling software, we used energy minimization, conformational analysis, and molecular dynamics to examine the different components of the cell wall and to determine relative binding energies and structural configurations of the cell wall components, both with and without the metals present. Electronic structure calculations of representative metal–organic complexes validate the more practical classical methods required in simulating the large number of atoms associated with the cell wall components. The classical force field simulations were conducted in both gas phase and solvated periodic cells. Force field-based simulation techniques can adequately describe the interactions of Cd with the cell wall, defining both metal ion coordinations and binding distances. However, the classical force field approach is inconsistent in describing the observed Pb–cell wall interactions due to possible limitations in the force field parameters, the propensity for Pb to form hydroxides at circumneutral pH, or the dominance of other adsorption mechanisms.</description><identifier>ISSN: 0016-7037</identifier><identifier>EISSN: 1872-9533</identifier><identifier>DOI: 10.1016/j.gca.2006.07.028</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Bacteria</subject><ispartof>Geochimica et cosmochimica acta, 2006-10, Vol.70 (20), p.5075-5088</ispartof><rights>2006 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a351t-80b1c9e61dc9373072ef679ad7df6f042e0bfd9e355c4dd59c7b6875c7d72c153</citedby><cites>FETCH-LOGICAL-a351t-80b1c9e61dc9373072ef679ad7df6f042e0bfd9e355c4dd59c7b6875c7d72c153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.gca.2006.07.028$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids></links><search><creatorcontrib>Johnson, Kelly J.</creatorcontrib><creatorcontrib>Cygan, Randall T.</creatorcontrib><creatorcontrib>Fein, Jeremy B.</creatorcontrib><title>Molecular simulations of metal adsorption to bacterial surfaces</title><title>Geochimica et cosmochimica acta</title><description>The atomic-scale interactions that occur between cations and the metal-binding cell wall components common to many gram-positive bacteria were investigated using molecular simulations techniques. We examined the adsorption of Cd and Pb onto peptidoglycan and teichoic acid components of the bacterial cell wall using classical energy force field methods. Within the framework of molecular mechanics and the Cerius 2 modeling software, we used energy minimization, conformational analysis, and molecular dynamics to examine the different components of the cell wall and to determine relative binding energies and structural configurations of the cell wall components, both with and without the metals present. Electronic structure calculations of representative metal–organic complexes validate the more practical classical methods required in simulating the large number of atoms associated with the cell wall components. The classical force field simulations were conducted in both gas phase and solvated periodic cells. Force field-based simulation techniques can adequately describe the interactions of Cd with the cell wall, defining both metal ion coordinations and binding distances. However, the classical force field approach is inconsistent in describing the observed Pb–cell wall interactions due to possible limitations in the force field parameters, the propensity for Pb to form hydroxides at circumneutral pH, or the dominance of other adsorption mechanisms.</description><subject>Bacteria</subject><issn>0016-7037</issn><issn>1872-9533</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2006</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOD5-gLuu3LXeNJPeFhcigy8YcaPrkCY3kqGdjEkr-O_NMK5dHTic78L9GLviUHHgzc2m-jS6qgGaCrCCuj1iC95iXXZSiGO2gDwqEQSesrOUNgCAUsKC3b2Ggcw86FgkP-acfNimIrhipEkPhbYpxN2-LKZQ9NpMFH3u0xydNpQu2InTQ6LLvzxnH48P76vncv329LK6X5daSD6VLfTcdNRwazqBArAm12CnLVrXOFjWBL2zHQkpzdJa2RnsmxalQYu14VKcs-vD3V0MXzOlSY0-GRoGvaUwJ8U7RKg55CE_DE0MKUVyahf9qOOP4qD2qtRGZVVqr0oBqqwqM7cHhvIH356iSsbT1pD1kcykbPD_0L-ZmnHO</recordid><startdate>20061015</startdate><enddate>20061015</enddate><creator>Johnson, Kelly J.</creator><creator>Cygan, Randall T.</creator><creator>Fein, Jeremy B.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H96</scope><scope>L.G</scope><scope>P64</scope></search><sort><creationdate>20061015</creationdate><title>Molecular simulations of metal adsorption to bacterial surfaces</title><author>Johnson, Kelly J. ; Cygan, Randall T. ; Fein, Jeremy B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a351t-80b1c9e61dc9373072ef679ad7df6f042e0bfd9e355c4dd59c7b6875c7d72c153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2006</creationdate><topic>Bacteria</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Johnson, Kelly J.</creatorcontrib><creatorcontrib>Cygan, Randall T.</creatorcontrib><creatorcontrib>Fein, Jeremy B.</creatorcontrib><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Geochimica et cosmochimica acta</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Johnson, Kelly J.</au><au>Cygan, Randall T.</au><au>Fein, Jeremy B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Molecular simulations of metal adsorption to bacterial surfaces</atitle><jtitle>Geochimica et cosmochimica acta</jtitle><date>2006-10-15</date><risdate>2006</risdate><volume>70</volume><issue>20</issue><spage>5075</spage><epage>5088</epage><pages>5075-5088</pages><issn>0016-7037</issn><eissn>1872-9533</eissn><abstract>The atomic-scale interactions that occur between cations and the metal-binding cell wall components common to many gram-positive bacteria were investigated using molecular simulations techniques. We examined the adsorption of Cd and Pb onto peptidoglycan and teichoic acid components of the bacterial cell wall using classical energy force field methods. Within the framework of molecular mechanics and the Cerius 2 modeling software, we used energy minimization, conformational analysis, and molecular dynamics to examine the different components of the cell wall and to determine relative binding energies and structural configurations of the cell wall components, both with and without the metals present. Electronic structure calculations of representative metal–organic complexes validate the more practical classical methods required in simulating the large number of atoms associated with the cell wall components. The classical force field simulations were conducted in both gas phase and solvated periodic cells. Force field-based simulation techniques can adequately describe the interactions of Cd with the cell wall, defining both metal ion coordinations and binding distances. However, the classical force field approach is inconsistent in describing the observed Pb–cell wall interactions due to possible limitations in the force field parameters, the propensity for Pb to form hydroxides at circumneutral pH, or the dominance of other adsorption mechanisms.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.gca.2006.07.028</doi><tpages>14</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0016-7037
ispartof Geochimica et cosmochimica acta, 2006-10, Vol.70 (20), p.5075-5088
issn 0016-7037
1872-9533
language eng
recordid cdi_proquest_miscellaneous_19770210
source Access via ScienceDirect (Elsevier)
subjects Bacteria
title Molecular simulations of metal adsorption to bacterial surfaces
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T19%3A56%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Molecular%20simulations%20of%20metal%20adsorption%20to%20bacterial%20surfaces&rft.jtitle=Geochimica%20et%20cosmochimica%20acta&rft.au=Johnson,%20Kelly%20J.&rft.date=2006-10-15&rft.volume=70&rft.issue=20&rft.spage=5075&rft.epage=5088&rft.pages=5075-5088&rft.issn=0016-7037&rft.eissn=1872-9533&rft_id=info:doi/10.1016/j.gca.2006.07.028&rft_dat=%3Cproquest_cross%3E19770210%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19770210&rft_id=info:pmid/&rft_els_id=S001670370601903X&rfr_iscdi=true