In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software
Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for Salmonella typhim...
Gespeichert in:
Veröffentlicht in: | Regulatory toxicology and pharmacology 2005-12, Vol.43 (3), p.313-323 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 323 |
---|---|
container_issue | 3 |
container_start_page | 313 |
container_title | Regulatory toxicology and pharmacology |
container_volume | 43 |
creator | Contrera, Joseph F. Matthews, Edwin J. Kruhlak, Naomi L. Benz, R. Daniel |
description | Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for
Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 (
n
=
3228), and
Escherichia coli gene mutation tests WP2, WP100, and polA (
n
=
472). Composite microbial mutation models (
n
=
3338) were developed combining all
Salmonella,
E. coli, and the
Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals.
Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of
Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry. |
doi_str_mv | 10.1016/j.yrtph.2005.09.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19766532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273230005001686</els_id><sourcerecordid>19766532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EotPCL0BCXrFLeLYndrxgUbWFVhqE-Fpbjv0y9SiJB9sBDb-eDDMSO1Zvc-69eoeQVwxqBky-3dWHVPaPNQdoatA1AHtCVgy0rIDr5ilZAVei4gLgglzmvAMA3rbqOblgkq8553JFfj9MNIchuEizS4hTmLY09tQ94hicHTLtY6KddQVTsAMd52K3C-VCOdA5H2kc0JUUS9zHIW6PIXpX5WIL0jD54DBTO3n68XZDP3-9_kJz7Msvm_AFedYvA_jyfK_I9_d3327uq82nDw8315vKibYtVSM71THBWtRMOQkehWhQON6IHte8BZAovXKar7UGDw2qTnOFErTinXfiirw59e5T_DFjLmYM2eEw2AnjnA3TSspG8AUUJ9ClmHPC3uxTGG06GAbmqNzszF_l5qjcgDaL8iX1-lw_dyP6f5mz4wV4dwJwefJnwGSyCzg59CEt5oyP4b8DfwCXvJSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19766532</pqid></control><display><type>article</type><title>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Contrera, Joseph F. ; Matthews, Edwin J. ; Kruhlak, Naomi L. ; Benz, R. Daniel</creator><creatorcontrib>Contrera, Joseph F. ; Matthews, Edwin J. ; Kruhlak, Naomi L. ; Benz, R. Daniel</creatorcontrib><description>Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for
Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 (
n
=
3228), and
Escherichia coli gene mutation tests WP2, WP100, and polA (
n
=
472). Composite microbial mutation models (
n
=
3338) were developed combining all
Salmonella,
E. coli, and the
Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals.
Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of
Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry.</description><identifier>ISSN: 0273-2300</identifier><identifier>EISSN: 1096-0295</identifier><identifier>DOI: 10.1016/j.yrtph.2005.09.001</identifier><identifier>PMID: 16242226</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Bacillus subtilis ; Bacteria - drug effects ; Bacteria - genetics ; Computer Simulation ; Databases, Genetic ; Drug development ; E-state indices ; Electrotopological ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; In silico screening ; Models, Statistical ; Mutagenicity ; Mutagenicity Tests ; Predictive toxicology ; QSAR ; Quantitative Structure-Activity Relationship ; Reproducibility of Results ; Salmonella ; Salmonella typhimurium ; Salmonella typhimurium - drug effects ; Salmonella typhimurium - genetics ; Setubal principles ; Software ; United States ; United States Environmental Protection Agency ; United States Food and Drug Administration</subject><ispartof>Regulatory toxicology and pharmacology, 2005-12, Vol.43 (3), p.313-323</ispartof><rights>2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</citedby><cites>FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yrtph.2005.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16242226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Contrera, Joseph F.</creatorcontrib><creatorcontrib>Matthews, Edwin J.</creatorcontrib><creatorcontrib>Kruhlak, Naomi L.</creatorcontrib><creatorcontrib>Benz, R. Daniel</creatorcontrib><title>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</title><title>Regulatory toxicology and pharmacology</title><addtitle>Regul Toxicol Pharmacol</addtitle><description>Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for
Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 (
n
=
3228), and
Escherichia coli gene mutation tests WP2, WP100, and polA (
n
=
472). Composite microbial mutation models (
n
=
3338) were developed combining all
Salmonella,
E. coli, and the
Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals.
Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of
Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry.</description><subject>Algorithms</subject><subject>Bacillus subtilis</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Drug development</subject><subject>E-state indices</subject><subject>Electrotopological</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>In silico screening</subject><subject>Models, Statistical</subject><subject>Mutagenicity</subject><subject>Mutagenicity Tests</subject><subject>Predictive toxicology</subject><subject>QSAR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Reproducibility of Results</subject><subject>Salmonella</subject><subject>Salmonella typhimurium</subject><subject>Salmonella typhimurium - drug effects</subject><subject>Salmonella typhimurium - genetics</subject><subject>Setubal principles</subject><subject>Software</subject><subject>United States</subject><subject>United States Environmental Protection Agency</subject><subject>United States Food and Drug Administration</subject><issn>0273-2300</issn><issn>1096-0295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EotPCL0BCXrFLeLYndrxgUbWFVhqE-Fpbjv0y9SiJB9sBDb-eDDMSO1Zvc-69eoeQVwxqBky-3dWHVPaPNQdoatA1AHtCVgy0rIDr5ilZAVei4gLgglzmvAMA3rbqOblgkq8553JFfj9MNIchuEizS4hTmLY09tQ94hicHTLtY6KddQVTsAMd52K3C-VCOdA5H2kc0JUUS9zHIW6PIXpX5WIL0jD54DBTO3n68XZDP3-9_kJz7Msvm_AFedYvA_jyfK_I9_d3327uq82nDw8315vKibYtVSM71THBWtRMOQkehWhQON6IHte8BZAovXKar7UGDw2qTnOFErTinXfiirw59e5T_DFjLmYM2eEw2AnjnA3TSspG8AUUJ9ClmHPC3uxTGG06GAbmqNzszF_l5qjcgDaL8iX1-lw_dyP6f5mz4wV4dwJwefJnwGSyCzg59CEt5oyP4b8DfwCXvJSC</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Contrera, Joseph F.</creator><creator>Matthews, Edwin J.</creator><creator>Kruhlak, Naomi L.</creator><creator>Benz, R. Daniel</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20051201</creationdate><title>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</title><author>Contrera, Joseph F. ; Matthews, Edwin J. ; Kruhlak, Naomi L. ; Benz, R. Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Bacillus subtilis</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Drug development</topic><topic>E-state indices</topic><topic>Electrotopological</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>In silico screening</topic><topic>Models, Statistical</topic><topic>Mutagenicity</topic><topic>Mutagenicity Tests</topic><topic>Predictive toxicology</topic><topic>QSAR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Reproducibility of Results</topic><topic>Salmonella</topic><topic>Salmonella typhimurium</topic><topic>Salmonella typhimurium - drug effects</topic><topic>Salmonella typhimurium - genetics</topic><topic>Setubal principles</topic><topic>Software</topic><topic>United States</topic><topic>United States Environmental Protection Agency</topic><topic>United States Food and Drug Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contrera, Joseph F.</creatorcontrib><creatorcontrib>Matthews, Edwin J.</creatorcontrib><creatorcontrib>Kruhlak, Naomi L.</creatorcontrib><creatorcontrib>Benz, R. Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Regulatory toxicology and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contrera, Joseph F.</au><au>Matthews, Edwin J.</au><au>Kruhlak, Naomi L.</au><au>Benz, R. Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</atitle><jtitle>Regulatory toxicology and pharmacology</jtitle><addtitle>Regul Toxicol Pharmacol</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>43</volume><issue>3</issue><spage>313</spage><epage>323</epage><pages>313-323</pages><issn>0273-2300</issn><eissn>1096-0295</eissn><abstract>Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for
Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 (
n
=
3228), and
Escherichia coli gene mutation tests WP2, WP100, and polA (
n
=
472). Composite microbial mutation models (
n
=
3338) were developed combining all
Salmonella,
E. coli, and the
Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals.
Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of
Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>16242226</pmid><doi>10.1016/j.yrtph.2005.09.001</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-2300 |
ispartof | Regulatory toxicology and pharmacology, 2005-12, Vol.43 (3), p.313-323 |
issn | 0273-2300 1096-0295 |
language | eng |
recordid | cdi_proquest_miscellaneous_19766532 |
source | MEDLINE; Elsevier ScienceDirect Journals Complete |
subjects | Algorithms Bacillus subtilis Bacteria - drug effects Bacteria - genetics Computer Simulation Databases, Genetic Drug development E-state indices Electrotopological Escherichia coli Escherichia coli - drug effects Escherichia coli - genetics In silico screening Models, Statistical Mutagenicity Mutagenicity Tests Predictive toxicology QSAR Quantitative Structure-Activity Relationship Reproducibility of Results Salmonella Salmonella typhimurium Salmonella typhimurium - drug effects Salmonella typhimurium - genetics Setubal principles Software United States United States Environmental Protection Agency United States Food and Drug Administration |
title | In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20screening%20of%20chemicals%20for%20bacterial%20mutagenicity%20using%20electrotopological%20E-state%20indices%20and%20MDL%20QSAR%20software&rft.jtitle=Regulatory%20toxicology%20and%20pharmacology&rft.au=Contrera,%20Joseph%20F.&rft.date=2005-12-01&rft.volume=43&rft.issue=3&rft.spage=313&rft.epage=323&rft.pages=313-323&rft.issn=0273-2300&rft.eissn=1096-0295&rft_id=info:doi/10.1016/j.yrtph.2005.09.001&rft_dat=%3Cproquest_cross%3E19766532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19766532&rft_id=info:pmid/16242226&rft_els_id=S0273230005001686&rfr_iscdi=true |