In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software

Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for Salmonella typhim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Regulatory toxicology and pharmacology 2005-12, Vol.43 (3), p.313-323
Hauptverfasser: Contrera, Joseph F., Matthews, Edwin J., Kruhlak, Naomi L., Benz, R. Daniel
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 323
container_issue 3
container_start_page 313
container_title Regulatory toxicology and pharmacology
container_volume 43
creator Contrera, Joseph F.
Matthews, Edwin J.
Kruhlak, Naomi L.
Benz, R. Daniel
description Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 ( n = 3228), and Escherichia coli gene mutation tests WP2, WP100, and polA ( n = 472). Composite microbial mutation models ( n = 3338) were developed combining all Salmonella, E. coli, and the Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals. Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry.
doi_str_mv 10.1016/j.yrtph.2005.09.001
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19766532</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0273230005001686</els_id><sourcerecordid>19766532</sourcerecordid><originalsourceid>FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</originalsourceid><addsrcrecordid>eNp9kE1v1DAURS0EotPCL0BCXrFLeLYndrxgUbWFVhqE-Fpbjv0y9SiJB9sBDb-eDDMSO1Zvc-69eoeQVwxqBky-3dWHVPaPNQdoatA1AHtCVgy0rIDr5ilZAVei4gLgglzmvAMA3rbqOblgkq8553JFfj9MNIchuEizS4hTmLY09tQ94hicHTLtY6KddQVTsAMd52K3C-VCOdA5H2kc0JUUS9zHIW6PIXpX5WIL0jD54DBTO3n68XZDP3-9_kJz7Msvm_AFedYvA_jyfK_I9_d3327uq82nDw8315vKibYtVSM71THBWtRMOQkehWhQON6IHte8BZAovXKar7UGDw2qTnOFErTinXfiirw59e5T_DFjLmYM2eEw2AnjnA3TSspG8AUUJ9ClmHPC3uxTGG06GAbmqNzszF_l5qjcgDaL8iX1-lw_dyP6f5mz4wV4dwJwefJnwGSyCzg59CEt5oyP4b8DfwCXvJSC</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19766532</pqid></control><display><type>article</type><title>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals Complete</source><creator>Contrera, Joseph F. ; Matthews, Edwin J. ; Kruhlak, Naomi L. ; Benz, R. Daniel</creator><creatorcontrib>Contrera, Joseph F. ; Matthews, Edwin J. ; Kruhlak, Naomi L. ; Benz, R. Daniel</creatorcontrib><description>Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 ( n = 3228), and Escherichia coli gene mutation tests WP2, WP100, and polA ( n = 472). Composite microbial mutation models ( n = 3338) were developed combining all Salmonella, E. coli, and the Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals. Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry.</description><identifier>ISSN: 0273-2300</identifier><identifier>EISSN: 1096-0295</identifier><identifier>DOI: 10.1016/j.yrtph.2005.09.001</identifier><identifier>PMID: 16242226</identifier><language>eng</language><publisher>Netherlands: Elsevier Inc</publisher><subject>Algorithms ; Bacillus subtilis ; Bacteria - drug effects ; Bacteria - genetics ; Computer Simulation ; Databases, Genetic ; Drug development ; E-state indices ; Electrotopological ; Escherichia coli ; Escherichia coli - drug effects ; Escherichia coli - genetics ; In silico screening ; Models, Statistical ; Mutagenicity ; Mutagenicity Tests ; Predictive toxicology ; QSAR ; Quantitative Structure-Activity Relationship ; Reproducibility of Results ; Salmonella ; Salmonella typhimurium ; Salmonella typhimurium - drug effects ; Salmonella typhimurium - genetics ; Setubal principles ; Software ; United States ; United States Environmental Protection Agency ; United States Food and Drug Administration</subject><ispartof>Regulatory toxicology and pharmacology, 2005-12, Vol.43 (3), p.313-323</ispartof><rights>2005</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</citedby><cites>FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.yrtph.2005.09.001$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/16242226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Contrera, Joseph F.</creatorcontrib><creatorcontrib>Matthews, Edwin J.</creatorcontrib><creatorcontrib>Kruhlak, Naomi L.</creatorcontrib><creatorcontrib>Benz, R. Daniel</creatorcontrib><title>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</title><title>Regulatory toxicology and pharmacology</title><addtitle>Regul Toxicol Pharmacol</addtitle><description>Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 ( n = 3228), and Escherichia coli gene mutation tests WP2, WP100, and polA ( n = 472). Composite microbial mutation models ( n = 3338) were developed combining all Salmonella, E. coli, and the Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals. Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry.</description><subject>Algorithms</subject><subject>Bacillus subtilis</subject><subject>Bacteria - drug effects</subject><subject>Bacteria - genetics</subject><subject>Computer Simulation</subject><subject>Databases, Genetic</subject><subject>Drug development</subject><subject>E-state indices</subject><subject>Electrotopological</subject><subject>Escherichia coli</subject><subject>Escherichia coli - drug effects</subject><subject>Escherichia coli - genetics</subject><subject>In silico screening</subject><subject>Models, Statistical</subject><subject>Mutagenicity</subject><subject>Mutagenicity Tests</subject><subject>Predictive toxicology</subject><subject>QSAR</subject><subject>Quantitative Structure-Activity Relationship</subject><subject>Reproducibility of Results</subject><subject>Salmonella</subject><subject>Salmonella typhimurium</subject><subject>Salmonella typhimurium - drug effects</subject><subject>Salmonella typhimurium - genetics</subject><subject>Setubal principles</subject><subject>Software</subject><subject>United States</subject><subject>United States Environmental Protection Agency</subject><subject>United States Food and Drug Administration</subject><issn>0273-2300</issn><issn>1096-0295</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kE1v1DAURS0EotPCL0BCXrFLeLYndrxgUbWFVhqE-Fpbjv0y9SiJB9sBDb-eDDMSO1Zvc-69eoeQVwxqBky-3dWHVPaPNQdoatA1AHtCVgy0rIDr5ilZAVei4gLgglzmvAMA3rbqOblgkq8553JFfj9MNIchuEizS4hTmLY09tQ94hicHTLtY6KddQVTsAMd52K3C-VCOdA5H2kc0JUUS9zHIW6PIXpX5WIL0jD54DBTO3n68XZDP3-9_kJz7Msvm_AFedYvA_jyfK_I9_d3327uq82nDw8315vKibYtVSM71THBWtRMOQkehWhQON6IHte8BZAovXKar7UGDw2qTnOFErTinXfiirw59e5T_DFjLmYM2eEw2AnjnA3TSspG8AUUJ9ClmHPC3uxTGG06GAbmqNzszF_l5qjcgDaL8iX1-lw_dyP6f5mz4wV4dwJwefJnwGSyCzg59CEt5oyP4b8DfwCXvJSC</recordid><startdate>20051201</startdate><enddate>20051201</enddate><creator>Contrera, Joseph F.</creator><creator>Matthews, Edwin J.</creator><creator>Kruhlak, Naomi L.</creator><creator>Benz, R. Daniel</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope></search><sort><creationdate>20051201</creationdate><title>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</title><author>Contrera, Joseph F. ; Matthews, Edwin J. ; Kruhlak, Naomi L. ; Benz, R. Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c388t-56b7b1318e917c60de335e3c253fe428006e6d7c924990d05e7b927e60972bdc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Algorithms</topic><topic>Bacillus subtilis</topic><topic>Bacteria - drug effects</topic><topic>Bacteria - genetics</topic><topic>Computer Simulation</topic><topic>Databases, Genetic</topic><topic>Drug development</topic><topic>E-state indices</topic><topic>Electrotopological</topic><topic>Escherichia coli</topic><topic>Escherichia coli - drug effects</topic><topic>Escherichia coli - genetics</topic><topic>In silico screening</topic><topic>Models, Statistical</topic><topic>Mutagenicity</topic><topic>Mutagenicity Tests</topic><topic>Predictive toxicology</topic><topic>QSAR</topic><topic>Quantitative Structure-Activity Relationship</topic><topic>Reproducibility of Results</topic><topic>Salmonella</topic><topic>Salmonella typhimurium</topic><topic>Salmonella typhimurium - drug effects</topic><topic>Salmonella typhimurium - genetics</topic><topic>Setubal principles</topic><topic>Software</topic><topic>United States</topic><topic>United States Environmental Protection Agency</topic><topic>United States Food and Drug Administration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Contrera, Joseph F.</creatorcontrib><creatorcontrib>Matthews, Edwin J.</creatorcontrib><creatorcontrib>Kruhlak, Naomi L.</creatorcontrib><creatorcontrib>Benz, R. Daniel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><jtitle>Regulatory toxicology and pharmacology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Contrera, Joseph F.</au><au>Matthews, Edwin J.</au><au>Kruhlak, Naomi L.</au><au>Benz, R. Daniel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software</atitle><jtitle>Regulatory toxicology and pharmacology</jtitle><addtitle>Regul Toxicol Pharmacol</addtitle><date>2005-12-01</date><risdate>2005</risdate><volume>43</volume><issue>3</issue><spage>313</spage><epage>323</epage><pages>313-323</pages><issn>0273-2300</issn><eissn>1096-0295</eissn><abstract>Quantitative structure–activity relationship (QSAR) software offers a rapid, cost effective means of prioritizing the mutagenic potential of chemicals. MDL QSAR models were developed using atom-type E-state indices and non-parametric discriminant analysis. Models were developed for Salmonella typhimurium gene mutation, combining results from strains TA97, TA98, TA100, TA1535, TA1536, TA1537, and TA1538 ( n = 3228), and Escherichia coli gene mutation tests WP2, WP100, and polA ( n = 472). Composite microbial mutation models ( n = 3338) were developed combining all Salmonella, E. coli, and the Bacillus subtilis rec spot test study results. The datasets contained 74% non-pharmaceuticals and 26% pharmaceuticals. Salmonella and microbial mutagenesis external validation studies included a total of 1444 and 1485 compounds, respectively. The average specificity, sensitivity, positive predictivity, concordance, and coverage of Salmonella models was 76, 81, 73, 78, and 98%, respectively, with similar performance for the microbial mutagenesis models. MDL QSAR and discriminant analysis provides rapid and highly automated mutagenicity screening software with good specificity, sensitivity, and coverage that is simpler and requires less user intervention than other similar software. MDL QSAR modules for microbial mutagenicity can provide efficient and cost effective large scale screening of compounds for mutagenic potential for the chemical and pharmaceutical industry.</abstract><cop>Netherlands</cop><pub>Elsevier Inc</pub><pmid>16242226</pmid><doi>10.1016/j.yrtph.2005.09.001</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0273-2300
ispartof Regulatory toxicology and pharmacology, 2005-12, Vol.43 (3), p.313-323
issn 0273-2300
1096-0295
language eng
recordid cdi_proquest_miscellaneous_19766532
source MEDLINE; Elsevier ScienceDirect Journals Complete
subjects Algorithms
Bacillus subtilis
Bacteria - drug effects
Bacteria - genetics
Computer Simulation
Databases, Genetic
Drug development
E-state indices
Electrotopological
Escherichia coli
Escherichia coli - drug effects
Escherichia coli - genetics
In silico screening
Models, Statistical
Mutagenicity
Mutagenicity Tests
Predictive toxicology
QSAR
Quantitative Structure-Activity Relationship
Reproducibility of Results
Salmonella
Salmonella typhimurium
Salmonella typhimurium - drug effects
Salmonella typhimurium - genetics
Setubal principles
Software
United States
United States Environmental Protection Agency
United States Food and Drug Administration
title In silico screening of chemicals for bacterial mutagenicity using electrotopological E-state indices and MDL QSAR software
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T11%3A32%3A38IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20silico%20screening%20of%20chemicals%20for%20bacterial%20mutagenicity%20using%20electrotopological%20E-state%20indices%20and%20MDL%20QSAR%20software&rft.jtitle=Regulatory%20toxicology%20and%20pharmacology&rft.au=Contrera,%20Joseph%20F.&rft.date=2005-12-01&rft.volume=43&rft.issue=3&rft.spage=313&rft.epage=323&rft.pages=313-323&rft.issn=0273-2300&rft.eissn=1096-0295&rft_id=info:doi/10.1016/j.yrtph.2005.09.001&rft_dat=%3Cproquest_cross%3E19766532%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19766532&rft_id=info:pmid/16242226&rft_els_id=S0273230005001686&rfr_iscdi=true