Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma
Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel...
Gespeichert in:
Veröffentlicht in: | ChemMedChem 2018-01, Vol.13 (2), p.164-177 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 177 |
---|---|
container_issue | 2 |
container_start_page | 164 |
container_title | ChemMedChem |
container_volume | 13 |
creator | Kyani, Anahita Tamura, Shuzo Yang, Suhui Shergalis, Andrea Samanta, Soma Kuang, Yuting Ljungman, Mats Neamati, Nouri |
description | Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer.
Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis. |
doi_str_mv | 10.1002/cmdc.201700629 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1976443468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1991103547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha0KVCjttcfKEhcuu3gSJ3aOVaCABGoP9BxNnInWKImp7VCt1B-Po6WLxIXTvJG-9zSjx9hXEGsQIjs3Y2fWmQAlRJlVH9gx6FKsFGh1sNeqOmKfQngQQkoN-iM7yqosL7JCHLN_FzYY90R-y3Hq-B2ZDU42RGv45TAb22G0buKu58jrAUNY5C_vItmJJ-889LYjfhPcSB5DUtPGtjY6H3jvPI8b4veeMI40xcV7NVjXpqDoRvzMDnscAn15mSfs94_L-_p6dfvz6qb-frsyEvJqJcn0WPYaJCkoOi37tFMuColpB9CdQW0QoVAg2gxFCyRVAblU0OVC5yfsbJf76N2fmUJsxvQ1DQNO5ObQQKVKKXNZLujpG_TBzX5K1yWqAhB5IVWi1jvKeBeCp7559HZEv21ANEsvzdJLs-8lGb69xM7tSN0e_19EAqod8NcOtH0nrqnvLurX8GcHrpoV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991103547</pqid></control><display><type>article</type><title>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Kyani, Anahita ; Tamura, Shuzo ; Yang, Suhui ; Shergalis, Andrea ; Samanta, Soma ; Kuang, Yuting ; Ljungman, Mats ; Neamati, Nouri</creator><creatorcontrib>Kyani, Anahita ; Tamura, Shuzo ; Yang, Suhui ; Shergalis, Andrea ; Samanta, Soma ; Kuang, Yuting ; Ljungman, Mats ; Neamati, Nouri</creatorcontrib><description>Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer.
Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.201700629</identifier><identifier>PMID: 29235250</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino Acid Transport System y+ - metabolism ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - pharmacology ; Antioxidants ; Apoptosis ; Autophagy ; Brain ; Brain cancer ; Brain Neoplasms - drug therapy ; Cancer ; Carrier Proteins - metabolism ; Catalytic Domain ; Cell death ; Cell Line, Tumor ; Cell Survival - drug effects ; Cellular stress response ; Cytotoxicity ; drug discovery ; Early Growth Response Protein 1 - metabolism ; EGR-1 protein ; Endoplasmic reticulum ; Ferroptosis ; Gene expression ; Gene sequencing ; Glioblastoma ; Glioblastoma - drug therapy ; Heme ; Heme Oxygenase-1 - metabolism ; Humans ; Inhibitors ; Molecular Docking Simulation ; oxidoreductases ; Phagocytosis ; Protein Binding ; Protein disulfide-isomerase ; Protein Disulfide-Isomerases - antagonists & inhibitors ; Proteins ; Ribonucleic acid ; RNA ; Structure-Activity Relationship ; Thioredoxin ; Transcription ; Unfolded Protein Response</subject><ispartof>ChemMedChem, 2018-01, Vol.13 (2), p.164-177</ispartof><rights>2018 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</citedby><cites>FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.201700629$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.201700629$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29235250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyani, Anahita</creatorcontrib><creatorcontrib>Tamura, Shuzo</creatorcontrib><creatorcontrib>Yang, Suhui</creatorcontrib><creatorcontrib>Shergalis, Andrea</creatorcontrib><creatorcontrib>Samanta, Soma</creatorcontrib><creatorcontrib>Kuang, Yuting</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Neamati, Nouri</creatorcontrib><title>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer.
Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis.</description><subject>Amino Acid Transport System y+ - metabolism</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Cancer</subject><subject>Carrier Proteins - metabolism</subject><subject>Catalytic Domain</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cellular stress response</subject><subject>Cytotoxicity</subject><subject>drug discovery</subject><subject>Early Growth Response Protein 1 - metabolism</subject><subject>EGR-1 protein</subject><subject>Endoplasmic reticulum</subject><subject>Ferroptosis</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Heme</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Molecular Docking Simulation</subject><subject>oxidoreductases</subject><subject>Phagocytosis</subject><subject>Protein Binding</subject><subject>Protein disulfide-isomerase</subject><subject>Protein Disulfide-Isomerases - antagonists & inhibitors</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Structure-Activity Relationship</subject><subject>Thioredoxin</subject><subject>Transcription</subject><subject>Unfolded Protein Response</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQha0KVCjttcfKEhcuu3gSJ3aOVaCABGoP9BxNnInWKImp7VCt1B-Po6WLxIXTvJG-9zSjx9hXEGsQIjs3Y2fWmQAlRJlVH9gx6FKsFGh1sNeqOmKfQngQQkoN-iM7yqosL7JCHLN_FzYY90R-y3Hq-B2ZDU42RGv45TAb22G0buKu58jrAUNY5C_vItmJJ-889LYjfhPcSB5DUtPGtjY6H3jvPI8b4veeMI40xcV7NVjXpqDoRvzMDnscAn15mSfs94_L-_p6dfvz6qb-frsyEvJqJcn0WPYaJCkoOi37tFMuColpB9CdQW0QoVAg2gxFCyRVAblU0OVC5yfsbJf76N2fmUJsxvQ1DQNO5ObQQKVKKXNZLujpG_TBzX5K1yWqAhB5IVWi1jvKeBeCp7559HZEv21ANEsvzdJLs-8lGb69xM7tSN0e_19EAqod8NcOtH0nrqnvLurX8GcHrpoV</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Kyani, Anahita</creator><creator>Tamura, Shuzo</creator><creator>Yang, Suhui</creator><creator>Shergalis, Andrea</creator><creator>Samanta, Soma</creator><creator>Kuang, Yuting</creator><creator>Ljungman, Mats</creator><creator>Neamati, Nouri</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180122</creationdate><title>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</title><author>Kyani, Anahita ; Tamura, Shuzo ; Yang, Suhui ; Shergalis, Andrea ; Samanta, Soma ; Kuang, Yuting ; Ljungman, Mats ; Neamati, Nouri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Transport System y+ - metabolism</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Cancer</topic><topic>Carrier Proteins - metabolism</topic><topic>Catalytic Domain</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cellular stress response</topic><topic>Cytotoxicity</topic><topic>drug discovery</topic><topic>Early Growth Response Protein 1 - metabolism</topic><topic>EGR-1 protein</topic><topic>Endoplasmic reticulum</topic><topic>Ferroptosis</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Heme</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Molecular Docking Simulation</topic><topic>oxidoreductases</topic><topic>Phagocytosis</topic><topic>Protein Binding</topic><topic>Protein disulfide-isomerase</topic><topic>Protein Disulfide-Isomerases - antagonists & inhibitors</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Structure-Activity Relationship</topic><topic>Thioredoxin</topic><topic>Transcription</topic><topic>Unfolded Protein Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyani, Anahita</creatorcontrib><creatorcontrib>Tamura, Shuzo</creatorcontrib><creatorcontrib>Yang, Suhui</creatorcontrib><creatorcontrib>Shergalis, Andrea</creatorcontrib><creatorcontrib>Samanta, Soma</creatorcontrib><creatorcontrib>Kuang, Yuting</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Neamati, Nouri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyani, Anahita</au><au>Tamura, Shuzo</au><au>Yang, Suhui</au><au>Shergalis, Andrea</au><au>Samanta, Soma</au><au>Kuang, Yuting</au><au>Ljungman, Mats</au><au>Neamati, Nouri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2018-01-22</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>164</spage><epage>177</epage><pages>164-177</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><abstract>Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer.
Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29235250</pmid><doi>10.1002/cmdc.201700629</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1860-7179 |
ispartof | ChemMedChem, 2018-01, Vol.13 (2), p.164-177 |
issn | 1860-7179 1860-7187 |
language | eng |
recordid | cdi_proquest_miscellaneous_1976443468 |
source | MEDLINE; Wiley Journals |
subjects | Amino Acid Transport System y+ - metabolism Antineoplastic Agents - chemical synthesis Antineoplastic Agents - pharmacology Antioxidants Apoptosis Autophagy Brain Brain cancer Brain Neoplasms - drug therapy Cancer Carrier Proteins - metabolism Catalytic Domain Cell death Cell Line, Tumor Cell Survival - drug effects Cellular stress response Cytotoxicity drug discovery Early Growth Response Protein 1 - metabolism EGR-1 protein Endoplasmic reticulum Ferroptosis Gene expression Gene sequencing Glioblastoma Glioblastoma - drug therapy Heme Heme Oxygenase-1 - metabolism Humans Inhibitors Molecular Docking Simulation oxidoreductases Phagocytosis Protein Binding Protein disulfide-isomerase Protein Disulfide-Isomerases - antagonists & inhibitors Proteins Ribonucleic acid RNA Structure-Activity Relationship Thioredoxin Transcription Unfolded Protein Response |
title | Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20and%20Mechanistic%20Elucidation%20of%20a%20Class%20of%20Protein%20Disulfide%20Isomerase%20Inhibitors%20for%20the%20Treatment%20of%20Glioblastoma&rft.jtitle=ChemMedChem&rft.au=Kyani,%20Anahita&rft.date=2018-01-22&rft.volume=13&rft.issue=2&rft.spage=164&rft.epage=177&rft.pages=164-177&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.201700629&rft_dat=%3Cproquest_cross%3E1991103547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1991103547&rft_id=info:pmid/29235250&rfr_iscdi=true |