Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma

Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:ChemMedChem 2018-01, Vol.13 (2), p.164-177
Hauptverfasser: Kyani, Anahita, Tamura, Shuzo, Yang, Suhui, Shergalis, Andrea, Samanta, Soma, Kuang, Yuting, Ljungman, Mats, Neamati, Nouri
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 177
container_issue 2
container_start_page 164
container_title ChemMedChem
container_volume 13
creator Kyani, Anahita
Tamura, Shuzo
Yang, Suhui
Shergalis, Andrea
Samanta, Soma
Kuang, Yuting
Ljungman, Mats
Neamati, Nouri
description Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer. Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis.
doi_str_mv 10.1002/cmdc.201700629
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1976443468</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1991103547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</originalsourceid><addsrcrecordid>eNqFkUFP3DAQha0KVCjttcfKEhcuu3gSJ3aOVaCABGoP9BxNnInWKImp7VCt1B-Po6WLxIXTvJG-9zSjx9hXEGsQIjs3Y2fWmQAlRJlVH9gx6FKsFGh1sNeqOmKfQngQQkoN-iM7yqosL7JCHLN_FzYY90R-y3Hq-B2ZDU42RGv45TAb22G0buKu58jrAUNY5C_vItmJJ-889LYjfhPcSB5DUtPGtjY6H3jvPI8b4veeMI40xcV7NVjXpqDoRvzMDnscAn15mSfs94_L-_p6dfvz6qb-frsyEvJqJcn0WPYaJCkoOi37tFMuColpB9CdQW0QoVAg2gxFCyRVAblU0OVC5yfsbJf76N2fmUJsxvQ1DQNO5ObQQKVKKXNZLujpG_TBzX5K1yWqAhB5IVWi1jvKeBeCp7559HZEv21ANEsvzdJLs-8lGb69xM7tSN0e_19EAqod8NcOtH0nrqnvLurX8GcHrpoV</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1991103547</pqid></control><display><type>article</type><title>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</title><source>MEDLINE</source><source>Wiley Journals</source><creator>Kyani, Anahita ; Tamura, Shuzo ; Yang, Suhui ; Shergalis, Andrea ; Samanta, Soma ; Kuang, Yuting ; Ljungman, Mats ; Neamati, Nouri</creator><creatorcontrib>Kyani, Anahita ; Tamura, Shuzo ; Yang, Suhui ; Shergalis, Andrea ; Samanta, Soma ; Kuang, Yuting ; Ljungman, Mats ; Neamati, Nouri</creatorcontrib><description>Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer. Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis.</description><identifier>ISSN: 1860-7179</identifier><identifier>EISSN: 1860-7187</identifier><identifier>DOI: 10.1002/cmdc.201700629</identifier><identifier>PMID: 29235250</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Amino Acid Transport System y+ - metabolism ; Antineoplastic Agents - chemical synthesis ; Antineoplastic Agents - pharmacology ; Antioxidants ; Apoptosis ; Autophagy ; Brain ; Brain cancer ; Brain Neoplasms - drug therapy ; Cancer ; Carrier Proteins - metabolism ; Catalytic Domain ; Cell death ; Cell Line, Tumor ; Cell Survival - drug effects ; Cellular stress response ; Cytotoxicity ; drug discovery ; Early Growth Response Protein 1 - metabolism ; EGR-1 protein ; Endoplasmic reticulum ; Ferroptosis ; Gene expression ; Gene sequencing ; Glioblastoma ; Glioblastoma - drug therapy ; Heme ; Heme Oxygenase-1 - metabolism ; Humans ; Inhibitors ; Molecular Docking Simulation ; oxidoreductases ; Phagocytosis ; Protein Binding ; Protein disulfide-isomerase ; Protein Disulfide-Isomerases - antagonists &amp; inhibitors ; Proteins ; Ribonucleic acid ; RNA ; Structure-Activity Relationship ; Thioredoxin ; Transcription ; Unfolded Protein Response</subject><ispartof>ChemMedChem, 2018-01, Vol.13 (2), p.164-177</ispartof><rights>2018 Wiley‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 Wiley-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</citedby><cites>FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fcmdc.201700629$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fcmdc.201700629$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29235250$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kyani, Anahita</creatorcontrib><creatorcontrib>Tamura, Shuzo</creatorcontrib><creatorcontrib>Yang, Suhui</creatorcontrib><creatorcontrib>Shergalis, Andrea</creatorcontrib><creatorcontrib>Samanta, Soma</creatorcontrib><creatorcontrib>Kuang, Yuting</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Neamati, Nouri</creatorcontrib><title>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</title><title>ChemMedChem</title><addtitle>ChemMedChem</addtitle><description>Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer. Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis.</description><subject>Amino Acid Transport System y+ - metabolism</subject><subject>Antineoplastic Agents - chemical synthesis</subject><subject>Antineoplastic Agents - pharmacology</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Autophagy</subject><subject>Brain</subject><subject>Brain cancer</subject><subject>Brain Neoplasms - drug therapy</subject><subject>Cancer</subject><subject>Carrier Proteins - metabolism</subject><subject>Catalytic Domain</subject><subject>Cell death</subject><subject>Cell Line, Tumor</subject><subject>Cell Survival - drug effects</subject><subject>Cellular stress response</subject><subject>Cytotoxicity</subject><subject>drug discovery</subject><subject>Early Growth Response Protein 1 - metabolism</subject><subject>EGR-1 protein</subject><subject>Endoplasmic reticulum</subject><subject>Ferroptosis</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Glioblastoma</subject><subject>Glioblastoma - drug therapy</subject><subject>Heme</subject><subject>Heme Oxygenase-1 - metabolism</subject><subject>Humans</subject><subject>Inhibitors</subject><subject>Molecular Docking Simulation</subject><subject>oxidoreductases</subject><subject>Phagocytosis</subject><subject>Protein Binding</subject><subject>Protein disulfide-isomerase</subject><subject>Protein Disulfide-Isomerases - antagonists &amp; inhibitors</subject><subject>Proteins</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Structure-Activity Relationship</subject><subject>Thioredoxin</subject><subject>Transcription</subject><subject>Unfolded Protein Response</subject><issn>1860-7179</issn><issn>1860-7187</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUFP3DAQha0KVCjttcfKEhcuu3gSJ3aOVaCABGoP9BxNnInWKImp7VCt1B-Po6WLxIXTvJG-9zSjx9hXEGsQIjs3Y2fWmQAlRJlVH9gx6FKsFGh1sNeqOmKfQngQQkoN-iM7yqosL7JCHLN_FzYY90R-y3Hq-B2ZDU42RGv45TAb22G0buKu58jrAUNY5C_vItmJJ-889LYjfhPcSB5DUtPGtjY6H3jvPI8b4veeMI40xcV7NVjXpqDoRvzMDnscAn15mSfs94_L-_p6dfvz6qb-frsyEvJqJcn0WPYaJCkoOi37tFMuColpB9CdQW0QoVAg2gxFCyRVAblU0OVC5yfsbJf76N2fmUJsxvQ1DQNO5ObQQKVKKXNZLujpG_TBzX5K1yWqAhB5IVWi1jvKeBeCp7559HZEv21ANEsvzdJLs-8lGb69xM7tSN0e_19EAqod8NcOtH0nrqnvLurX8GcHrpoV</recordid><startdate>20180122</startdate><enddate>20180122</enddate><creator>Kyani, Anahita</creator><creator>Tamura, Shuzo</creator><creator>Yang, Suhui</creator><creator>Shergalis, Andrea</creator><creator>Samanta, Soma</creator><creator>Kuang, Yuting</creator><creator>Ljungman, Mats</creator><creator>Neamati, Nouri</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TK</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20180122</creationdate><title>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</title><author>Kyani, Anahita ; Tamura, Shuzo ; Yang, Suhui ; Shergalis, Andrea ; Samanta, Soma ; Kuang, Yuting ; Ljungman, Mats ; Neamati, Nouri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4139-4ecfa6f814e715d84fcfae3054a715118dca8caa15710b2a0b1e47513471d3083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino Acid Transport System y+ - metabolism</topic><topic>Antineoplastic Agents - chemical synthesis</topic><topic>Antineoplastic Agents - pharmacology</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Autophagy</topic><topic>Brain</topic><topic>Brain cancer</topic><topic>Brain Neoplasms - drug therapy</topic><topic>Cancer</topic><topic>Carrier Proteins - metabolism</topic><topic>Catalytic Domain</topic><topic>Cell death</topic><topic>Cell Line, Tumor</topic><topic>Cell Survival - drug effects</topic><topic>Cellular stress response</topic><topic>Cytotoxicity</topic><topic>drug discovery</topic><topic>Early Growth Response Protein 1 - metabolism</topic><topic>EGR-1 protein</topic><topic>Endoplasmic reticulum</topic><topic>Ferroptosis</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Glioblastoma</topic><topic>Glioblastoma - drug therapy</topic><topic>Heme</topic><topic>Heme Oxygenase-1 - metabolism</topic><topic>Humans</topic><topic>Inhibitors</topic><topic>Molecular Docking Simulation</topic><topic>oxidoreductases</topic><topic>Phagocytosis</topic><topic>Protein Binding</topic><topic>Protein disulfide-isomerase</topic><topic>Protein Disulfide-Isomerases - antagonists &amp; inhibitors</topic><topic>Proteins</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Structure-Activity Relationship</topic><topic>Thioredoxin</topic><topic>Transcription</topic><topic>Unfolded Protein Response</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kyani, Anahita</creatorcontrib><creatorcontrib>Tamura, Shuzo</creatorcontrib><creatorcontrib>Yang, Suhui</creatorcontrib><creatorcontrib>Shergalis, Andrea</creatorcontrib><creatorcontrib>Samanta, Soma</creatorcontrib><creatorcontrib>Kuang, Yuting</creatorcontrib><creatorcontrib>Ljungman, Mats</creatorcontrib><creatorcontrib>Neamati, Nouri</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>ChemMedChem</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kyani, Anahita</au><au>Tamura, Shuzo</au><au>Yang, Suhui</au><au>Shergalis, Andrea</au><au>Samanta, Soma</au><au>Kuang, Yuting</au><au>Ljungman, Mats</au><au>Neamati, Nouri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma</atitle><jtitle>ChemMedChem</jtitle><addtitle>ChemMedChem</addtitle><date>2018-01-22</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>164</spage><epage>177</epage><pages>164-177</pages><issn>1860-7179</issn><eissn>1860-7187</eissn><abstract>Protein disulfide isomerase (PDI) is overexpressed in glioblastoma, the most aggressive form of brain cancer, and folds nascent proteins responsible for the progression and spread of the disease. Herein we describe a novel nanomolar PDI inhibitor, pyrimidotriazinedione 35G8, that is toxic in a panel of human glioblastoma cell lines. We performed a medium‐throughput 20 000‐compound screen of a diverse subset of 1 000 000 compounds to identify cytotoxic small molecules. Cytotoxic compounds were screened for PDI inhibition, and, from the screen, 35G8 emerged as the most cytotoxic inhibitor of PDI. Bromouridine labeling and sequencing (Bru‐seq) of nascent RNA revealed that 35G8 induces nuclear factor‐like 2 (Nrf2) antioxidant response, endoplasmic reticulum (ER) stress response, and autophagy. Specifically, 35G8 upregulated heme oxygenase 1 and solute carrier family 7 member 11 (SLC7A11) transcription and protein expression and repressed PDI target genes such as thioredoxin‐interacting protein 1 (TXNIP) and early growth response 1 (EGR1). Interestingly, 35G8‐induced cell death did not proceed via apoptosis or necrosis, but by a mixture of autophagy and ferroptosis. Cumulatively, our data demonstrate a mechanism for a novel PDI inhibitor as a chemical probe to validate PDI as a target for brain cancer. Iron‐clad PDI inhibition: We describe a nanomolar, cytotoxic protein disulfide isomerase (PDI) inhibitor, 35G8, that is potent in a panel of human glioblastoma cell lines. Bromouridine‐labeling and sequencing of nascent RNA revealed that 35G8 induces Nrf2 antioxidant response, endoplasmic reticulum stress response, autophagy, and may induce cell death via ferroptosis.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29235250</pmid><doi>10.1002/cmdc.201700629</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1860-7179
ispartof ChemMedChem, 2018-01, Vol.13 (2), p.164-177
issn 1860-7179
1860-7187
language eng
recordid cdi_proquest_miscellaneous_1976443468
source MEDLINE; Wiley Journals
subjects Amino Acid Transport System y+ - metabolism
Antineoplastic Agents - chemical synthesis
Antineoplastic Agents - pharmacology
Antioxidants
Apoptosis
Autophagy
Brain
Brain cancer
Brain Neoplasms - drug therapy
Cancer
Carrier Proteins - metabolism
Catalytic Domain
Cell death
Cell Line, Tumor
Cell Survival - drug effects
Cellular stress response
Cytotoxicity
drug discovery
Early Growth Response Protein 1 - metabolism
EGR-1 protein
Endoplasmic reticulum
Ferroptosis
Gene expression
Gene sequencing
Glioblastoma
Glioblastoma - drug therapy
Heme
Heme Oxygenase-1 - metabolism
Humans
Inhibitors
Molecular Docking Simulation
oxidoreductases
Phagocytosis
Protein Binding
Protein disulfide-isomerase
Protein Disulfide-Isomerases - antagonists & inhibitors
Proteins
Ribonucleic acid
RNA
Structure-Activity Relationship
Thioredoxin
Transcription
Unfolded Protein Response
title Discovery and Mechanistic Elucidation of a Class of Protein Disulfide Isomerase Inhibitors for the Treatment of Glioblastoma
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T00%3A31%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discovery%20and%20Mechanistic%20Elucidation%20of%20a%20Class%20of%20Protein%20Disulfide%20Isomerase%20Inhibitors%20for%20the%20Treatment%20of%20Glioblastoma&rft.jtitle=ChemMedChem&rft.au=Kyani,%20Anahita&rft.date=2018-01-22&rft.volume=13&rft.issue=2&rft.spage=164&rft.epage=177&rft.pages=164-177&rft.issn=1860-7179&rft.eissn=1860-7187&rft_id=info:doi/10.1002/cmdc.201700629&rft_dat=%3Cproquest_cross%3E1991103547%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1991103547&rft_id=info:pmid/29235250&rfr_iscdi=true