Metal–Organic Framework‐Derived Materials for Sodium Energy Storage

Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemen...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-01, Vol.14 (3), p.n/a
Hauptverfasser: Zou, Guoqiang, Hou, Hongshuai, Ge, Peng, Huang, Zhaodong, Zhao, Ganggang, Yin, Dulin, Ji, Xiaobo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page n/a
container_issue 3
container_start_page
container_title Small (Weinheim an der Bergstrasse, Germany)
container_volume 14
creator Zou, Guoqiang
Hou, Hongshuai
Ge, Peng
Huang, Zhaodong
Zhao, Ganggang
Yin, Dulin
Ji, Xiaobo
description Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed. Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed.
doi_str_mv 10.1002/smll.201702648
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975592447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975592447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</originalsourceid><addsrcrecordid>eNqF0E1PwjAYB_DGaATRq0ezxIuXYd9Y26NBQJMRDui56baODPeC7Sbhxkcw8RvySewCYuLFU580v-efJ38ArhHsIwjxvS3yvI8hYhAHlJ-ALgoQ8QOOxelxRrADLqxdQkgQpuwcdLDAmEEkumAy1bXKd9uvmVmoMou9sVGFXlfmbbf9fNQm-9CJN1W1m1RuvbQy3rxKsqbwRqU2i403ryujFvoSnKUO6KvD2wOv49HL8MkPZ5Pn4UPox5Rx7nPFcJIQGNAgak-giCrBo0Qohd0PFJrrlBJMGCMUx4wEmEKqeaQEiiBmpAfu9rkrU7032tayyGys81yVumqsRIINBgJT2tLbP3RZNaZ01znFOeUUc-RUf69iU1lrdCpXJiuU2UgEZVuxbCuWx4rdws0htokKnRz5T6cOiD1YZ7ne_BMn59Mw_A3_Bo6eh-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988484281</pqid></control><display><type>article</type><title>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zou, Guoqiang ; Hou, Hongshuai ; Ge, Peng ; Huang, Zhaodong ; Zhao, Ganggang ; Yin, Dulin ; Ji, Xiaobo</creator><creatorcontrib>Zou, Guoqiang ; Hou, Hongshuai ; Ge, Peng ; Huang, Zhaodong ; Zhao, Ganggang ; Yin, Dulin ; Ji, Xiaobo</creatorcontrib><description>Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed. Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201702648</identifier><identifier>PMID: 29227019</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternative energy sources ; Anodes ; Catalysis ; Drug delivery systems ; Electrochemical analysis ; Energy conversion ; Energy storage ; Heat treatment ; Ion storage ; Lithium-ion batteries ; Metal oxides ; metal phosphides ; Metal sulfides ; Metal-organic frameworks ; MOF‐derived materials ; Nanocomposites ; Nanotechnology ; Phosphides ; porous carbon ; Porous materials ; Rechargeable batteries ; Selenides ; Sodium ; Sodium-ion batteries ; Storage batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-01, Vol.14 (3), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</citedby><cites>FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201702648$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201702648$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29227019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Huang, Zhaodong</creatorcontrib><creatorcontrib>Zhao, Ganggang</creatorcontrib><creatorcontrib>Yin, Dulin</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><title>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed. Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed.</description><subject>Alternative energy sources</subject><subject>Anodes</subject><subject>Catalysis</subject><subject>Drug delivery systems</subject><subject>Electrochemical analysis</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Heat treatment</subject><subject>Ion storage</subject><subject>Lithium-ion batteries</subject><subject>Metal oxides</subject><subject>metal phosphides</subject><subject>Metal sulfides</subject><subject>Metal-organic frameworks</subject><subject>MOF‐derived materials</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Phosphides</subject><subject>porous carbon</subject><subject>Porous materials</subject><subject>Rechargeable batteries</subject><subject>Selenides</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0E1PwjAYB_DGaATRq0ezxIuXYd9Y26NBQJMRDui56baODPeC7Sbhxkcw8RvySewCYuLFU580v-efJ38ArhHsIwjxvS3yvI8hYhAHlJ-ALgoQ8QOOxelxRrADLqxdQkgQpuwcdLDAmEEkumAy1bXKd9uvmVmoMou9sVGFXlfmbbf9fNQm-9CJN1W1m1RuvbQy3rxKsqbwRqU2i403ryujFvoSnKUO6KvD2wOv49HL8MkPZ5Pn4UPox5Rx7nPFcJIQGNAgak-giCrBo0Qohd0PFJrrlBJMGCMUx4wEmEKqeaQEiiBmpAfu9rkrU7032tayyGys81yVumqsRIINBgJT2tLbP3RZNaZ01znFOeUUc-RUf69iU1lrdCpXJiuU2UgEZVuxbCuWx4rdws0htokKnRz5T6cOiD1YZ7ne_BMn59Mw_A3_Bo6eh-E</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zou, Guoqiang</creator><creator>Hou, Hongshuai</creator><creator>Ge, Peng</creator><creator>Huang, Zhaodong</creator><creator>Zhao, Ganggang</creator><creator>Yin, Dulin</creator><creator>Ji, Xiaobo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</title><author>Zou, Guoqiang ; Hou, Hongshuai ; Ge, Peng ; Huang, Zhaodong ; Zhao, Ganggang ; Yin, Dulin ; Ji, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative energy sources</topic><topic>Anodes</topic><topic>Catalysis</topic><topic>Drug delivery systems</topic><topic>Electrochemical analysis</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Heat treatment</topic><topic>Ion storage</topic><topic>Lithium-ion batteries</topic><topic>Metal oxides</topic><topic>metal phosphides</topic><topic>Metal sulfides</topic><topic>Metal-organic frameworks</topic><topic>MOF‐derived materials</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Phosphides</topic><topic>porous carbon</topic><topic>Porous materials</topic><topic>Rechargeable batteries</topic><topic>Selenides</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Huang, Zhaodong</creatorcontrib><creatorcontrib>Zhao, Ganggang</creatorcontrib><creatorcontrib>Yin, Dulin</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Guoqiang</au><au>Hou, Hongshuai</au><au>Ge, Peng</au><au>Huang, Zhaodong</au><au>Zhao, Ganggang</au><au>Yin, Dulin</au><au>Ji, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed. Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29227019</pmid><doi>10.1002/smll.201702648</doi><tpages>27</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1613-6810
ispartof Small (Weinheim an der Bergstrasse, Germany), 2018-01, Vol.14 (3), p.n/a
issn 1613-6810
1613-6829
language eng
recordid cdi_proquest_miscellaneous_1975592447
source Wiley Online Library Journals Frontfile Complete
subjects Alternative energy sources
Anodes
Catalysis
Drug delivery systems
Electrochemical analysis
Energy conversion
Energy storage
Heat treatment
Ion storage
Lithium-ion batteries
Metal oxides
metal phosphides
Metal sulfides
Metal-organic frameworks
MOF‐derived materials
Nanocomposites
Nanotechnology
Phosphides
porous carbon
Porous materials
Rechargeable batteries
Selenides
Sodium
Sodium-ion batteries
Storage batteries
title Metal–Organic Framework‐Derived Materials for Sodium Energy Storage
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Framework%E2%80%90Derived%20Materials%20for%20Sodium%20Energy%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zou,%20Guoqiang&rft.date=2018-01&rft.volume=14&rft.issue=3&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201702648&rft_dat=%3Cproquest_cross%3E1975592447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988484281&rft_id=info:pmid/29227019&rfr_iscdi=true