Metal–Organic Framework‐Derived Materials for Sodium Energy Storage
Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemen...
Gespeichert in:
Veröffentlicht in: | Small (Weinheim an der Bergstrasse, Germany) Germany), 2018-01, Vol.14 (3), p.n/a |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | n/a |
---|---|
container_issue | 3 |
container_start_page | |
container_title | Small (Weinheim an der Bergstrasse, Germany) |
container_volume | 14 |
creator | Zou, Guoqiang Hou, Hongshuai Ge, Peng Huang, Zhaodong Zhao, Ganggang Yin, Dulin Ji, Xiaobo |
description | Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.
Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed. |
doi_str_mv | 10.1002/smll.201702648 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1975592447</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1975592447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</originalsourceid><addsrcrecordid>eNqF0E1PwjAYB_DGaATRq0ezxIuXYd9Y26NBQJMRDui56baODPeC7Sbhxkcw8RvySewCYuLFU580v-efJ38ArhHsIwjxvS3yvI8hYhAHlJ-ALgoQ8QOOxelxRrADLqxdQkgQpuwcdLDAmEEkumAy1bXKd9uvmVmoMou9sVGFXlfmbbf9fNQm-9CJN1W1m1RuvbQy3rxKsqbwRqU2i403ryujFvoSnKUO6KvD2wOv49HL8MkPZ5Pn4UPox5Rx7nPFcJIQGNAgak-giCrBo0Qohd0PFJrrlBJMGCMUx4wEmEKqeaQEiiBmpAfu9rkrU7032tayyGys81yVumqsRIINBgJT2tLbP3RZNaZ01znFOeUUc-RUf69iU1lrdCpXJiuU2UgEZVuxbCuWx4rdws0htokKnRz5T6cOiD1YZ7ne_BMn59Mw_A3_Bo6eh-E</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1988484281</pqid></control><display><type>article</type><title>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Zou, Guoqiang ; Hou, Hongshuai ; Ge, Peng ; Huang, Zhaodong ; Zhao, Ganggang ; Yin, Dulin ; Ji, Xiaobo</creator><creatorcontrib>Zou, Guoqiang ; Hou, Hongshuai ; Ge, Peng ; Huang, Zhaodong ; Zhao, Ganggang ; Yin, Dulin ; Ji, Xiaobo</creatorcontrib><description>Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.
Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed.</description><identifier>ISSN: 1613-6810</identifier><identifier>EISSN: 1613-6829</identifier><identifier>DOI: 10.1002/smll.201702648</identifier><identifier>PMID: 29227019</identifier><language>eng</language><publisher>Germany: Wiley Subscription Services, Inc</publisher><subject>Alternative energy sources ; Anodes ; Catalysis ; Drug delivery systems ; Electrochemical analysis ; Energy conversion ; Energy storage ; Heat treatment ; Ion storage ; Lithium-ion batteries ; Metal oxides ; metal phosphides ; Metal sulfides ; Metal-organic frameworks ; MOF‐derived materials ; Nanocomposites ; Nanotechnology ; Phosphides ; porous carbon ; Porous materials ; Rechargeable batteries ; Selenides ; Sodium ; Sodium-ion batteries ; Storage batteries</subject><ispartof>Small (Weinheim an der Bergstrasse, Germany), 2018-01, Vol.14 (3), p.n/a</ispartof><rights>2017 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim</rights><rights>2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.</rights><rights>2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</citedby><cites>FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fsmll.201702648$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fsmll.201702648$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27901,27902,45550,45551</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29227019$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Huang, Zhaodong</creatorcontrib><creatorcontrib>Zhao, Ganggang</creatorcontrib><creatorcontrib>Yin, Dulin</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><title>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</title><title>Small (Weinheim an der Bergstrasse, Germany)</title><addtitle>Small</addtitle><description>Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.
Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed.</description><subject>Alternative energy sources</subject><subject>Anodes</subject><subject>Catalysis</subject><subject>Drug delivery systems</subject><subject>Electrochemical analysis</subject><subject>Energy conversion</subject><subject>Energy storage</subject><subject>Heat treatment</subject><subject>Ion storage</subject><subject>Lithium-ion batteries</subject><subject>Metal oxides</subject><subject>metal phosphides</subject><subject>Metal sulfides</subject><subject>Metal-organic frameworks</subject><subject>MOF‐derived materials</subject><subject>Nanocomposites</subject><subject>Nanotechnology</subject><subject>Phosphides</subject><subject>porous carbon</subject><subject>Porous materials</subject><subject>Rechargeable batteries</subject><subject>Selenides</subject><subject>Sodium</subject><subject>Sodium-ion batteries</subject><subject>Storage batteries</subject><issn>1613-6810</issn><issn>1613-6829</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><recordid>eNqF0E1PwjAYB_DGaATRq0ezxIuXYd9Y26NBQJMRDui56baODPeC7Sbhxkcw8RvySewCYuLFU580v-efJ38ArhHsIwjxvS3yvI8hYhAHlJ-ALgoQ8QOOxelxRrADLqxdQkgQpuwcdLDAmEEkumAy1bXKd9uvmVmoMou9sVGFXlfmbbf9fNQm-9CJN1W1m1RuvbQy3rxKsqbwRqU2i403ryujFvoSnKUO6KvD2wOv49HL8MkPZ5Pn4UPox5Rx7nPFcJIQGNAgak-giCrBo0Qohd0PFJrrlBJMGCMUx4wEmEKqeaQEiiBmpAfu9rkrU7032tayyGys81yVumqsRIINBgJT2tLbP3RZNaZ01znFOeUUc-RUf69iU1lrdCpXJiuU2UgEZVuxbCuWx4rdws0htokKnRz5T6cOiD1YZ7ne_BMn59Mw_A3_Bo6eh-E</recordid><startdate>201801</startdate><enddate>201801</enddate><creator>Zou, Guoqiang</creator><creator>Hou, Hongshuai</creator><creator>Ge, Peng</creator><creator>Huang, Zhaodong</creator><creator>Zhao, Ganggang</creator><creator>Yin, Dulin</creator><creator>Ji, Xiaobo</creator><general>Wiley Subscription Services, Inc</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>201801</creationdate><title>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</title><author>Zou, Guoqiang ; Hou, Hongshuai ; Ge, Peng ; Huang, Zhaodong ; Zhao, Ganggang ; Yin, Dulin ; Ji, Xiaobo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4788-8a72dd30646b2270414a98bd9aa26b209e8ef432377342c7362404e8ba91b0273</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alternative energy sources</topic><topic>Anodes</topic><topic>Catalysis</topic><topic>Drug delivery systems</topic><topic>Electrochemical analysis</topic><topic>Energy conversion</topic><topic>Energy storage</topic><topic>Heat treatment</topic><topic>Ion storage</topic><topic>Lithium-ion batteries</topic><topic>Metal oxides</topic><topic>metal phosphides</topic><topic>Metal sulfides</topic><topic>Metal-organic frameworks</topic><topic>MOF‐derived materials</topic><topic>Nanocomposites</topic><topic>Nanotechnology</topic><topic>Phosphides</topic><topic>porous carbon</topic><topic>Porous materials</topic><topic>Rechargeable batteries</topic><topic>Selenides</topic><topic>Sodium</topic><topic>Sodium-ion batteries</topic><topic>Storage batteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zou, Guoqiang</creatorcontrib><creatorcontrib>Hou, Hongshuai</creatorcontrib><creatorcontrib>Ge, Peng</creatorcontrib><creatorcontrib>Huang, Zhaodong</creatorcontrib><creatorcontrib>Zhao, Ganggang</creatorcontrib><creatorcontrib>Yin, Dulin</creatorcontrib><creatorcontrib>Ji, Xiaobo</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zou, Guoqiang</au><au>Hou, Hongshuai</au><au>Ge, Peng</au><au>Huang, Zhaodong</au><au>Zhao, Ganggang</au><au>Yin, Dulin</au><au>Ji, Xiaobo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Metal–Organic Framework‐Derived Materials for Sodium Energy Storage</atitle><jtitle>Small (Weinheim an der Bergstrasse, Germany)</jtitle><addtitle>Small</addtitle><date>2018-01</date><risdate>2018</risdate><volume>14</volume><issue>3</issue><epage>n/a</epage><issn>1613-6810</issn><eissn>1613-6829</eissn><abstract>Recently, sodium‐ion batteries (SIBs) are extensively explored and are regarded as one of the most promising alternatives to lithium‐ion batteries for electrochemical energy conversion and storage, owing to the abundant raw material resources, low cost, and similar electrochemical behavior of elemental sodium compared to lithium. Metal–organic frameworks (MOFs) have attracted enormous attention due to their high surface areas, tunable structures, and diverse applications in drug delivery, gas storage, and catalysis. Recently, there has been an escalating interest in exploiting MOF‐derived materials as anodes for sodium energy storage due to their fast mass transport resulting from their highly porous structures and relatively simple preparation methods originating from in situ thermal treatment processes. In this Review, the recent progress of the sodium‐ion storage performances of MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), as SIB anodes is systematically and completely presented and discussed. Moreover, the current challenges and perspectives of MOF‐derived materials in electrochemical energy storage are discussed.
Metal‐organic framework (MOF)‐derived materials are widely utilized as sodium ion battery anodes owing to their fast mass transport and simple preparation methods. Recent progress in MOF‐derived materials, including MOF‐derived porous carbons, metal oxides, metal oxide/carbon nanocomposites, and other materials (e.g., metal phosphides, metal sulfides, and metal selenides), for sodium energy storage is presented and discussed.</abstract><cop>Germany</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29227019</pmid><doi>10.1002/smll.201702648</doi><tpages>27</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1613-6810 |
ispartof | Small (Weinheim an der Bergstrasse, Germany), 2018-01, Vol.14 (3), p.n/a |
issn | 1613-6810 1613-6829 |
language | eng |
recordid | cdi_proquest_miscellaneous_1975592447 |
source | Wiley Online Library Journals Frontfile Complete |
subjects | Alternative energy sources Anodes Catalysis Drug delivery systems Electrochemical analysis Energy conversion Energy storage Heat treatment Ion storage Lithium-ion batteries Metal oxides metal phosphides Metal sulfides Metal-organic frameworks MOF‐derived materials Nanocomposites Nanotechnology Phosphides porous carbon Porous materials Rechargeable batteries Selenides Sodium Sodium-ion batteries Storage batteries |
title | Metal–Organic Framework‐Derived Materials for Sodium Energy Storage |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A40%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Metal%E2%80%93Organic%20Framework%E2%80%90Derived%20Materials%20for%20Sodium%20Energy%20Storage&rft.jtitle=Small%20(Weinheim%20an%20der%20Bergstrasse,%20Germany)&rft.au=Zou,%20Guoqiang&rft.date=2018-01&rft.volume=14&rft.issue=3&rft.epage=n/a&rft.issn=1613-6810&rft.eissn=1613-6829&rft_id=info:doi/10.1002/smll.201702648&rft_dat=%3Cproquest_cross%3E1975592447%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1988484281&rft_id=info:pmid/29227019&rfr_iscdi=true |