In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography

The subtype of basal cell carcinoma (BCC) influences the choice of treatment. Optical coherence tomography (OCT) is a non‐invasive imaging tool, and a recent development of an angiographic version of OCT has extended the application of OCT to image the cutaneous microvasculature (so‐called dynamic O...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Experimental dermatology 2018-02, Vol.27 (2), p.156-165
Hauptverfasser: Themstrup, Lotte, De Carvalho, Nathalie, Nielsen, Sabrina M., Olsen, Jonas, Ciardo, Silvana, Schuh, Sandra, Nørnberg, Birgit M.‐H., Welzel, Julia, Ulrich, Martina, Pellacani, Giovanni, Jemec, Gregor B. E.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 165
container_issue 2
container_start_page 156
container_title Experimental dermatology
container_volume 27
creator Themstrup, Lotte
De Carvalho, Nathalie
Nielsen, Sabrina M.
Olsen, Jonas
Ciardo, Silvana
Schuh, Sandra
Nørnberg, Birgit M.‐H.
Welzel, Julia
Ulrich, Martina
Pellacani, Giovanni
Jemec, Gregor B. E.
description The subtype of basal cell carcinoma (BCC) influences the choice of treatment. Optical coherence tomography (OCT) is a non‐invasive imaging tool, and a recent development of an angiographic version of OCT has extended the application of OCT to image the cutaneous microvasculature (so‐called dynamic OCT, D‐OCT). This study explores D‐OCT's ability to differentiate the common BCC subtypes by microvascular and structural imaging. Eighty‐one patients with 98 BCC lesions, consisting of three subtypes: 27 superficial BCC (sBCC), 55 nodular BCC (nBCC) and 16 infiltrative BCC (iBCC) were D‐OCT scanned at three European dermatology centres. Blinded evaluations of microvascular and structural features were performed, followed by extensive statistical analysis of risk ratio (RR) and multiple correspondence analysis. nBCC lesions displayed most characteristic structural and vascular features. Serpiginous vessels, branching vessels, vessels creating a circumscribed figure and sharply demarcated hyporeflective ovoid structures in the dermis were all associated with a higher risk of the subtype being nBCC. The presence of highly present lines and dark peripheral borders at the margin of ovoid structures was negatively associated with iBCC. Lastly, the finding of hyporeflective ovoid structures protruding from epidermis correlated with sBCC. We identified various microvascular and structural D‐OCT features that may aid non‐invasive identification of BCC subtypes. This would allow clinicians to individualize and optimize BCC treatment as well as aid follow‐up of non‐surgical treatment.
doi_str_mv 10.1111/exd.13479
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1974005327</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1992242991</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3889-d13f4856f9b63867028a2d1c42ab26b78c17bcd2ded93560d3dc58369620915e3</originalsourceid><addsrcrecordid>eNp1kc9OHSEUxkljU6-2C1_AkLhpF6P8GWBYGrXWxKSbNuluwgBzxczACMPVeY0-cZle20WTsjiw-J3v8J0PgBOMznE5F_bFnGNaC_kGbDBHqEKcsAOwQRLxigvEDsFRSo8IYUEFewcOiSSYCY434Oedhzu3C9C4vrfR-tmp2QUPQw91GMfy6lRSA9R2KEVF7XwYFUy5m5fJJtgtcHQ6hp1KOg8qQuUNTHPMes6x9LlRbZ3fwpzWahavCg7DNDu9qoaHdai2cA5j2EY1PSzvwdteDcl-eL2PwffPN9-uvlT3X2_vri7vK02bRlYG075uGO9lx2lTXJJGEYN1TVRHeCcajUWnDTHWSMo4MtRo1lAuOUESM0uPwce97hTDU7ZpbkeXVpvK25BTi6WoEWKUiIKe_YM-hhx9-V2hJCE1kRIX6tOeKutIKdq-nWKxH5cWo3YNqi1Btb-DKuzpq2LuRmv-kn-SKcDFHnh2g13-r9Te_LjeS_4CXeefQA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1992242991</pqid></control><display><type>article</type><title>In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><creator>Themstrup, Lotte ; De Carvalho, Nathalie ; Nielsen, Sabrina M. ; Olsen, Jonas ; Ciardo, Silvana ; Schuh, Sandra ; Nørnberg, Birgit M.‐H. ; Welzel, Julia ; Ulrich, Martina ; Pellacani, Giovanni ; Jemec, Gregor B. E.</creator><creatorcontrib>Themstrup, Lotte ; De Carvalho, Nathalie ; Nielsen, Sabrina M. ; Olsen, Jonas ; Ciardo, Silvana ; Schuh, Sandra ; Nørnberg, Birgit M.‐H. ; Welzel, Julia ; Ulrich, Martina ; Pellacani, Giovanni ; Jemec, Gregor B. E.</creatorcontrib><description>The subtype of basal cell carcinoma (BCC) influences the choice of treatment. Optical coherence tomography (OCT) is a non‐invasive imaging tool, and a recent development of an angiographic version of OCT has extended the application of OCT to image the cutaneous microvasculature (so‐called dynamic OCT, D‐OCT). This study explores D‐OCT's ability to differentiate the common BCC subtypes by microvascular and structural imaging. Eighty‐one patients with 98 BCC lesions, consisting of three subtypes: 27 superficial BCC (sBCC), 55 nodular BCC (nBCC) and 16 infiltrative BCC (iBCC) were D‐OCT scanned at three European dermatology centres. Blinded evaluations of microvascular and structural features were performed, followed by extensive statistical analysis of risk ratio (RR) and multiple correspondence analysis. nBCC lesions displayed most characteristic structural and vascular features. Serpiginous vessels, branching vessels, vessels creating a circumscribed figure and sharply demarcated hyporeflective ovoid structures in the dermis were all associated with a higher risk of the subtype being nBCC. The presence of highly present lines and dark peripheral borders at the margin of ovoid structures was negatively associated with iBCC. Lastly, the finding of hyporeflective ovoid structures protruding from epidermis correlated with sBCC. We identified various microvascular and structural D‐OCT features that may aid non‐invasive identification of BCC subtypes. This would allow clinicians to individualize and optimize BCC treatment as well as aid follow‐up of non‐surgical treatment.</description><identifier>ISSN: 0906-6705</identifier><identifier>EISSN: 1600-0625</identifier><identifier>DOI: 10.1111/exd.13479</identifier><identifier>PMID: 29215761</identifier><language>eng</language><publisher>Denmark: Wiley Subscription Services, Inc</publisher><subject>Aged ; Basal cell carcinoma ; biophotonics ; Biopsy ; Carcinoma, Basal Cell - diagnostic imaging ; Carcinoma, Basal Cell - pathology ; Cell Differentiation ; Dermis ; Epidermis ; Europe ; Female ; Humans ; Image Processing, Computer-Assisted ; keratinocyte carcinoma ; Male ; Medical imaging ; Microcirculation ; Microvasculature ; Middle Aged ; Neovascularization, Pathologic ; non‐invasive imaging ; non‐melanoma skin cancer ; Observer Variation ; OCT angiography ; Random Allocation ; Risk ; Skin Neoplasms - diagnostic imaging ; Skin Neoplasms - pathology ; Statistical analysis ; Tomography ; Tomography, Optical Coherence</subject><ispartof>Experimental dermatology, 2018-02, Vol.27 (2), p.156-165</ispartof><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><rights>2017 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd.</rights><rights>2018 John Wiley &amp; Sons A/S. Published by John Wiley &amp; Sons Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3889-d13f4856f9b63867028a2d1c42ab26b78c17bcd2ded93560d3dc58369620915e3</citedby><cites>FETCH-LOGICAL-c3889-d13f4856f9b63867028a2d1c42ab26b78c17bcd2ded93560d3dc58369620915e3</cites><orcidid>0000-0002-0823-5731 ; 0000-0003-1368-1522</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fexd.13479$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fexd.13479$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,776,780,1411,27903,27904,45553,45554</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29215761$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Themstrup, Lotte</creatorcontrib><creatorcontrib>De Carvalho, Nathalie</creatorcontrib><creatorcontrib>Nielsen, Sabrina M.</creatorcontrib><creatorcontrib>Olsen, Jonas</creatorcontrib><creatorcontrib>Ciardo, Silvana</creatorcontrib><creatorcontrib>Schuh, Sandra</creatorcontrib><creatorcontrib>Nørnberg, Birgit M.‐H.</creatorcontrib><creatorcontrib>Welzel, Julia</creatorcontrib><creatorcontrib>Ulrich, Martina</creatorcontrib><creatorcontrib>Pellacani, Giovanni</creatorcontrib><creatorcontrib>Jemec, Gregor B. E.</creatorcontrib><title>In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography</title><title>Experimental dermatology</title><addtitle>Exp Dermatol</addtitle><description>The subtype of basal cell carcinoma (BCC) influences the choice of treatment. Optical coherence tomography (OCT) is a non‐invasive imaging tool, and a recent development of an angiographic version of OCT has extended the application of OCT to image the cutaneous microvasculature (so‐called dynamic OCT, D‐OCT). This study explores D‐OCT's ability to differentiate the common BCC subtypes by microvascular and structural imaging. Eighty‐one patients with 98 BCC lesions, consisting of three subtypes: 27 superficial BCC (sBCC), 55 nodular BCC (nBCC) and 16 infiltrative BCC (iBCC) were D‐OCT scanned at three European dermatology centres. Blinded evaluations of microvascular and structural features were performed, followed by extensive statistical analysis of risk ratio (RR) and multiple correspondence analysis. nBCC lesions displayed most characteristic structural and vascular features. Serpiginous vessels, branching vessels, vessels creating a circumscribed figure and sharply demarcated hyporeflective ovoid structures in the dermis were all associated with a higher risk of the subtype being nBCC. The presence of highly present lines and dark peripheral borders at the margin of ovoid structures was negatively associated with iBCC. Lastly, the finding of hyporeflective ovoid structures protruding from epidermis correlated with sBCC. We identified various microvascular and structural D‐OCT features that may aid non‐invasive identification of BCC subtypes. This would allow clinicians to individualize and optimize BCC treatment as well as aid follow‐up of non‐surgical treatment.</description><subject>Aged</subject><subject>Basal cell carcinoma</subject><subject>biophotonics</subject><subject>Biopsy</subject><subject>Carcinoma, Basal Cell - diagnostic imaging</subject><subject>Carcinoma, Basal Cell - pathology</subject><subject>Cell Differentiation</subject><subject>Dermis</subject><subject>Epidermis</subject><subject>Europe</subject><subject>Female</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>keratinocyte carcinoma</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Microcirculation</subject><subject>Microvasculature</subject><subject>Middle Aged</subject><subject>Neovascularization, Pathologic</subject><subject>non‐invasive imaging</subject><subject>non‐melanoma skin cancer</subject><subject>Observer Variation</subject><subject>OCT angiography</subject><subject>Random Allocation</subject><subject>Risk</subject><subject>Skin Neoplasms - diagnostic imaging</subject><subject>Skin Neoplasms - pathology</subject><subject>Statistical analysis</subject><subject>Tomography</subject><subject>Tomography, Optical Coherence</subject><issn>0906-6705</issn><issn>1600-0625</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc9OHSEUxkljU6-2C1_AkLhpF6P8GWBYGrXWxKSbNuluwgBzxczACMPVeY0-cZle20WTsjiw-J3v8J0PgBOMznE5F_bFnGNaC_kGbDBHqEKcsAOwQRLxigvEDsFRSo8IYUEFewcOiSSYCY434Oedhzu3C9C4vrfR-tmp2QUPQw91GMfy6lRSA9R2KEVF7XwYFUy5m5fJJtgtcHQ6hp1KOg8qQuUNTHPMes6x9LlRbZ3fwpzWahavCg7DNDu9qoaHdai2cA5j2EY1PSzvwdteDcl-eL2PwffPN9-uvlT3X2_vri7vK02bRlYG075uGO9lx2lTXJJGEYN1TVRHeCcajUWnDTHWSMo4MtRo1lAuOUESM0uPwce97hTDU7ZpbkeXVpvK25BTi6WoEWKUiIKe_YM-hhx9-V2hJCE1kRIX6tOeKutIKdq-nWKxH5cWo3YNqi1Btb-DKuzpq2LuRmv-kn-SKcDFHnh2g13-r9Te_LjeS_4CXeefQA</recordid><startdate>201802</startdate><enddate>201802</enddate><creator>Themstrup, Lotte</creator><creator>De Carvalho, Nathalie</creator><creator>Nielsen, Sabrina M.</creator><creator>Olsen, Jonas</creator><creator>Ciardo, Silvana</creator><creator>Schuh, Sandra</creator><creator>Nørnberg, Birgit M.‐H.</creator><creator>Welzel, Julia</creator><creator>Ulrich, Martina</creator><creator>Pellacani, Giovanni</creator><creator>Jemec, Gregor B. E.</creator><general>Wiley Subscription Services, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7T5</scope><scope>H94</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-0823-5731</orcidid><orcidid>https://orcid.org/0000-0003-1368-1522</orcidid></search><sort><creationdate>201802</creationdate><title>In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography</title><author>Themstrup, Lotte ; De Carvalho, Nathalie ; Nielsen, Sabrina M. ; Olsen, Jonas ; Ciardo, Silvana ; Schuh, Sandra ; Nørnberg, Birgit M.‐H. ; Welzel, Julia ; Ulrich, Martina ; Pellacani, Giovanni ; Jemec, Gregor B. E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3889-d13f4856f9b63867028a2d1c42ab26b78c17bcd2ded93560d3dc58369620915e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aged</topic><topic>Basal cell carcinoma</topic><topic>biophotonics</topic><topic>Biopsy</topic><topic>Carcinoma, Basal Cell - diagnostic imaging</topic><topic>Carcinoma, Basal Cell - pathology</topic><topic>Cell Differentiation</topic><topic>Dermis</topic><topic>Epidermis</topic><topic>Europe</topic><topic>Female</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>keratinocyte carcinoma</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Microcirculation</topic><topic>Microvasculature</topic><topic>Middle Aged</topic><topic>Neovascularization, Pathologic</topic><topic>non‐invasive imaging</topic><topic>non‐melanoma skin cancer</topic><topic>Observer Variation</topic><topic>OCT angiography</topic><topic>Random Allocation</topic><topic>Risk</topic><topic>Skin Neoplasms - diagnostic imaging</topic><topic>Skin Neoplasms - pathology</topic><topic>Statistical analysis</topic><topic>Tomography</topic><topic>Tomography, Optical Coherence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Themstrup, Lotte</creatorcontrib><creatorcontrib>De Carvalho, Nathalie</creatorcontrib><creatorcontrib>Nielsen, Sabrina M.</creatorcontrib><creatorcontrib>Olsen, Jonas</creatorcontrib><creatorcontrib>Ciardo, Silvana</creatorcontrib><creatorcontrib>Schuh, Sandra</creatorcontrib><creatorcontrib>Nørnberg, Birgit M.‐H.</creatorcontrib><creatorcontrib>Welzel, Julia</creatorcontrib><creatorcontrib>Ulrich, Martina</creatorcontrib><creatorcontrib>Pellacani, Giovanni</creatorcontrib><creatorcontrib>Jemec, Gregor B. E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Immunology Abstracts</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Experimental dermatology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Themstrup, Lotte</au><au>De Carvalho, Nathalie</au><au>Nielsen, Sabrina M.</au><au>Olsen, Jonas</au><au>Ciardo, Silvana</au><au>Schuh, Sandra</au><au>Nørnberg, Birgit M.‐H.</au><au>Welzel, Julia</au><au>Ulrich, Martina</au><au>Pellacani, Giovanni</au><au>Jemec, Gregor B. E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography</atitle><jtitle>Experimental dermatology</jtitle><addtitle>Exp Dermatol</addtitle><date>2018-02</date><risdate>2018</risdate><volume>27</volume><issue>2</issue><spage>156</spage><epage>165</epage><pages>156-165</pages><issn>0906-6705</issn><eissn>1600-0625</eissn><abstract>The subtype of basal cell carcinoma (BCC) influences the choice of treatment. Optical coherence tomography (OCT) is a non‐invasive imaging tool, and a recent development of an angiographic version of OCT has extended the application of OCT to image the cutaneous microvasculature (so‐called dynamic OCT, D‐OCT). This study explores D‐OCT's ability to differentiate the common BCC subtypes by microvascular and structural imaging. Eighty‐one patients with 98 BCC lesions, consisting of three subtypes: 27 superficial BCC (sBCC), 55 nodular BCC (nBCC) and 16 infiltrative BCC (iBCC) were D‐OCT scanned at three European dermatology centres. Blinded evaluations of microvascular and structural features were performed, followed by extensive statistical analysis of risk ratio (RR) and multiple correspondence analysis. nBCC lesions displayed most characteristic structural and vascular features. Serpiginous vessels, branching vessels, vessels creating a circumscribed figure and sharply demarcated hyporeflective ovoid structures in the dermis were all associated with a higher risk of the subtype being nBCC. The presence of highly present lines and dark peripheral borders at the margin of ovoid structures was negatively associated with iBCC. Lastly, the finding of hyporeflective ovoid structures protruding from epidermis correlated with sBCC. We identified various microvascular and structural D‐OCT features that may aid non‐invasive identification of BCC subtypes. This would allow clinicians to individualize and optimize BCC treatment as well as aid follow‐up of non‐surgical treatment.</abstract><cop>Denmark</cop><pub>Wiley Subscription Services, Inc</pub><pmid>29215761</pmid><doi>10.1111/exd.13479</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0002-0823-5731</orcidid><orcidid>https://orcid.org/0000-0003-1368-1522</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0906-6705
ispartof Experimental dermatology, 2018-02, Vol.27 (2), p.156-165
issn 0906-6705
1600-0625
language eng
recordid cdi_proquest_miscellaneous_1974005327
source MEDLINE; Wiley Online Library Journals Frontfile Complete
subjects Aged
Basal cell carcinoma
biophotonics
Biopsy
Carcinoma, Basal Cell - diagnostic imaging
Carcinoma, Basal Cell - pathology
Cell Differentiation
Dermis
Epidermis
Europe
Female
Humans
Image Processing, Computer-Assisted
keratinocyte carcinoma
Male
Medical imaging
Microcirculation
Microvasculature
Middle Aged
Neovascularization, Pathologic
non‐invasive imaging
non‐melanoma skin cancer
Observer Variation
OCT angiography
Random Allocation
Risk
Skin Neoplasms - diagnostic imaging
Skin Neoplasms - pathology
Statistical analysis
Tomography
Tomography, Optical Coherence
title In vivo differentiation of common basal cell carcinoma subtypes by microvascular and structural imaging using dynamic optical coherence tomography
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T04%3A16%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20vivo%20differentiation%20of%20common%20basal%20cell%20carcinoma%20subtypes%20by%20microvascular%20and%20structural%20imaging%20using%20dynamic%20optical%20coherence%20tomography&rft.jtitle=Experimental%20dermatology&rft.au=Themstrup,%20Lotte&rft.date=2018-02&rft.volume=27&rft.issue=2&rft.spage=156&rft.epage=165&rft.pages=156-165&rft.issn=0906-6705&rft.eissn=1600-0625&rft_id=info:doi/10.1111/exd.13479&rft_dat=%3Cproquest_cross%3E1992242991%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1992242991&rft_id=info:pmid/29215761&rfr_iscdi=true