High-throughput phenotypic profiling of gene–environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae

Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene–environment interactions, quantitative assays are required both for gene expression and for the phenotypic resp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Analytical biochemistry 2004-04, Vol.327 (1), p.23-34
Hauptverfasser: Weiss, Andrew, Delproposto, James, Giroux, Craig N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 34
container_issue 1
container_start_page 23
container_title Analytical biochemistry
container_volume 327
creator Weiss, Andrew
Delproposto, James
Giroux, Craig N
description Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene–environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene–environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics.
doi_str_mv 10.1016/j.ab.2003.12.020
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_19734994</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0003269704000028</els_id><sourcerecordid>19734994</sourcerecordid><originalsourceid>FETCH-LOGICAL-c377t-6477d279107a8501668f8211e80ab615ebca860a456117c26795ebdd413c84203</originalsourceid><addsrcrecordid>eNp1kD-P1DAQxS0E4paDngq5oksY54-d0KETcEgnUQC15TiTxKvEztnOonS01HxDPgk-diUqqtHMvPek9yPkJYOcAeNvjrnq8gKgzFmRQwGPyIFByzMooX1MDpA-WcFbcUWehXAEYKyq-VNyxWooyxrEgfy8NeOUxcm7bZzWLdJ1QuvivhpNV-8GMxs7UjfQES3-_vEL7cl4Zxe0kRob0SsdjbOBdju935SNJqpoTkhH777HierNp0VZNe_BhGShX5TWk_Ju2TUGqtHjyQSj8Dl5Mqg54IvLvCbfPrz_enOb3X3--Onm3V2mSyFixish-kK0DIRq6gSBN0NTMIYNqI6zGjutGg4qFWVM6IKLNt36vmKlbqoCymvy-pyb6t1vGKJcTNA4z8qi24JkrSirtq2SEM5C7V0IHge5erMov0sG8gG_PErVyQf8khUS_ma_umRv3YL9P8OFdxK8PQswNTwZ9DJog1ZjbzzqKHtn_p_-B2TTmIk</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>19734994</pqid></control><display><type>article</type><title>High-throughput phenotypic profiling of gene–environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae</title><source>MEDLINE</source><source>Access via ScienceDirect (Elsevier)</source><creator>Weiss, Andrew ; Delproposto, James ; Giroux, Craig N</creator><creatorcontrib>Weiss, Andrew ; Delproposto, James ; Giroux, Craig N</creatorcontrib><description>Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene–environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene–environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics.</description><identifier>ISSN: 0003-2697</identifier><identifier>EISSN: 1096-0309</identifier><identifier>DOI: 10.1016/j.ab.2003.12.020</identifier><identifier>PMID: 15033507</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Bioscreen C ; Cell growth assay ; Environment ; Functional genomics ; Genetic sensitivity ; Gene–environment interactions ; High-throughput screening ; Hydrogen Peroxide - metabolism ; Hydrogen Peroxide - pharmacology ; Miniaturization ; Oxidative Stress ; Pharmacogenetics - methods ; Phenotype ; Phenotypic profiling ; Saccharomyces cerevisae ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - drug effects ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae Proteins - genetics ; Sequence Deletion ; Systems biology ; tert-Butylhydroperoxide - metabolism ; tert-Butylhydroperoxide - pharmacology ; Toxicogenomics ; Transcription Factors - genetics</subject><ispartof>Analytical biochemistry, 2004-04, Vol.327 (1), p.23-34</ispartof><rights>2004 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c377t-6477d279107a8501668f8211e80ab615ebca860a456117c26795ebdd413c84203</citedby><cites>FETCH-LOGICAL-c377t-6477d279107a8501668f8211e80ab615ebca860a456117c26795ebdd413c84203</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ab.2003.12.020$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,780,784,3550,27924,27925,45995</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/15033507$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Weiss, Andrew</creatorcontrib><creatorcontrib>Delproposto, James</creatorcontrib><creatorcontrib>Giroux, Craig N</creatorcontrib><title>High-throughput phenotypic profiling of gene–environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae</title><title>Analytical biochemistry</title><addtitle>Anal Biochem</addtitle><description>Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene–environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene–environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics.</description><subject>Bioscreen C</subject><subject>Cell growth assay</subject><subject>Environment</subject><subject>Functional genomics</subject><subject>Genetic sensitivity</subject><subject>Gene–environment interactions</subject><subject>High-throughput screening</subject><subject>Hydrogen Peroxide - metabolism</subject><subject>Hydrogen Peroxide - pharmacology</subject><subject>Miniaturization</subject><subject>Oxidative Stress</subject><subject>Pharmacogenetics - methods</subject><subject>Phenotype</subject><subject>Phenotypic profiling</subject><subject>Saccharomyces cerevisae</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - drug effects</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Sequence Deletion</subject><subject>Systems biology</subject><subject>tert-Butylhydroperoxide - metabolism</subject><subject>tert-Butylhydroperoxide - pharmacology</subject><subject>Toxicogenomics</subject><subject>Transcription Factors - genetics</subject><issn>0003-2697</issn><issn>1096-0309</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kD-P1DAQxS0E4paDngq5oksY54-d0KETcEgnUQC15TiTxKvEztnOonS01HxDPgk-diUqqtHMvPek9yPkJYOcAeNvjrnq8gKgzFmRQwGPyIFByzMooX1MDpA-WcFbcUWehXAEYKyq-VNyxWooyxrEgfy8NeOUxcm7bZzWLdJ1QuvivhpNV-8GMxs7UjfQES3-_vEL7cl4Zxe0kRob0SsdjbOBdju935SNJqpoTkhH777HierNp0VZNe_BhGShX5TWk_Ju2TUGqtHjyQSj8Dl5Mqg54IvLvCbfPrz_enOb3X3--Onm3V2mSyFixish-kK0DIRq6gSBN0NTMIYNqI6zGjutGg4qFWVM6IKLNt36vmKlbqoCymvy-pyb6t1vGKJcTNA4z8qi24JkrSirtq2SEM5C7V0IHge5erMov0sG8gG_PErVyQf8khUS_ma_umRv3YL9P8OFdxK8PQswNTwZ9DJog1ZjbzzqKHtn_p_-B2TTmIk</recordid><startdate>20040401</startdate><enddate>20040401</enddate><creator>Weiss, Andrew</creator><creator>Delproposto, James</creator><creator>Giroux, Craig N</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope></search><sort><creationdate>20040401</creationdate><title>High-throughput phenotypic profiling of gene–environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae</title><author>Weiss, Andrew ; Delproposto, James ; Giroux, Craig N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c377t-6477d279107a8501668f8211e80ab615ebca860a456117c26795ebdd413c84203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Bioscreen C</topic><topic>Cell growth assay</topic><topic>Environment</topic><topic>Functional genomics</topic><topic>Genetic sensitivity</topic><topic>Gene–environment interactions</topic><topic>High-throughput screening</topic><topic>Hydrogen Peroxide - metabolism</topic><topic>Hydrogen Peroxide - pharmacology</topic><topic>Miniaturization</topic><topic>Oxidative Stress</topic><topic>Pharmacogenetics - methods</topic><topic>Phenotype</topic><topic>Phenotypic profiling</topic><topic>Saccharomyces cerevisae</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - drug effects</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Sequence Deletion</topic><topic>Systems biology</topic><topic>tert-Butylhydroperoxide - metabolism</topic><topic>tert-Butylhydroperoxide - pharmacology</topic><topic>Toxicogenomics</topic><topic>Transcription Factors - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Weiss, Andrew</creatorcontrib><creatorcontrib>Delproposto, James</creatorcontrib><creatorcontrib>Giroux, Craig N</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><jtitle>Analytical biochemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Weiss, Andrew</au><au>Delproposto, James</au><au>Giroux, Craig N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-throughput phenotypic profiling of gene–environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae</atitle><jtitle>Analytical biochemistry</jtitle><addtitle>Anal Biochem</addtitle><date>2004-04-01</date><risdate>2004</risdate><volume>327</volume><issue>1</issue><spage>23</spage><epage>34</epage><pages>23-34</pages><issn>0003-2697</issn><eissn>1096-0309</eissn><abstract>Cell-based assays are widely used in high-throughput screening to determine the effects of toxicants and drugs on their biological targets. To enable a functional genomics modeling of gene–environment interactions, quantitative assays are required both for gene expression and for the phenotypic responses to environmental challenge. To address this need, we describe an automated high-throughput methodology that provides phenotypic profiling of the cellular responses to environmental stress in Saccharomyces cerevisiae. Standardized assay conditions enable the use of a single metric value to quantify yeast microculture growth curves. This assay format allows precise control of both genetic and environmental determinants of the cellular responses to oxidative stress, a common mechanism of environmental insult. These yeast-cell-based assays are validated with hydrogen peroxide, a simple direct-acting oxidant. Phenotypic profiling of the oxidative stress response of a yap1 mutant strain demonstrates the mechanistic analysis of genetic susceptibility to oxidative stress. As a proof of concept for analysis of more complex gene–environment interactions, we describe a combinatorial assay design for phenotypic profiling of the cellular responses to tert-butyl hydroperoxide, a complex oxidant that is actively metabolized by its target cells. Thus, the yeast microculture assay format supports comprehensive applications in toxicogenomics.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>15033507</pmid><doi>10.1016/j.ab.2003.12.020</doi><tpages>12</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0003-2697
ispartof Analytical biochemistry, 2004-04, Vol.327 (1), p.23-34
issn 0003-2697
1096-0309
language eng
recordid cdi_proquest_miscellaneous_19734994
source MEDLINE; Access via ScienceDirect (Elsevier)
subjects Bioscreen C
Cell growth assay
Environment
Functional genomics
Genetic sensitivity
Gene–environment interactions
High-throughput screening
Hydrogen Peroxide - metabolism
Hydrogen Peroxide - pharmacology
Miniaturization
Oxidative Stress
Pharmacogenetics - methods
Phenotype
Phenotypic profiling
Saccharomyces cerevisae
Saccharomyces cerevisiae
Saccharomyces cerevisiae - drug effects
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae Proteins - genetics
Sequence Deletion
Systems biology
tert-Butylhydroperoxide - metabolism
tert-Butylhydroperoxide - pharmacology
Toxicogenomics
Transcription Factors - genetics
title High-throughput phenotypic profiling of gene–environment interactions by quantitative growth curve analysis in Saccharomyces cerevisiae
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-22T22%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-throughput%20phenotypic%20profiling%20of%20gene%E2%80%93environment%20interactions%20by%20quantitative%20growth%20curve%20analysis%20in%20Saccharomyces%20cerevisiae&rft.jtitle=Analytical%20biochemistry&rft.au=Weiss,%20Andrew&rft.date=2004-04-01&rft.volume=327&rft.issue=1&rft.spage=23&rft.epage=34&rft.pages=23-34&rft.issn=0003-2697&rft.eissn=1096-0309&rft_id=info:doi/10.1016/j.ab.2003.12.020&rft_dat=%3Cproquest_cross%3E19734994%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=19734994&rft_id=info:pmid/15033507&rft_els_id=S0003269704000028&rfr_iscdi=true