Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions

The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The D...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Water science and technology 2017-12, Vol.76 (11-12), p.3135-3141
Hauptverfasser: Kowalik-Klimczak, A, Gierycz, P
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3141
container_issue 11-12
container_start_page 3135
container_title Water science and technology
container_volume 76
creator Kowalik-Klimczak, A
Gierycz, P
description The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed.
doi_str_mv 10.2166/wst.2017.456
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1973460881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984328073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMotlZ3riXgpoJTk5dpJllK8aNQcKHuhJAmGZ0yM6nJjNJ_b0qrC1dvcQ-X-w5C55RMgHJ-8x27CRBaTPIpP0BDKiXPZMHgEA0JFCyjAGyATmJcEUIKlpNjNAAJlHAph-jt2ei6at-xL3GrW19WdRd0V_kWN65ZBt26iPvoLC59wOYj-Kbqm_F8Pr_CCYo4OOO_XNjgMkU46rrD0df9tiGeoqNS19Gd7e8Ivd7fvcwes8XTw3x2u8gMmxZdBtaByZei1FCkjaYQ1pROaqCMSp1-1AIsFbm0hAOZFpZJAC4otY47CZqN0HjXuw7-s3exU00VjavrtN73UdHkI-dECJrQy3_oyvehTesSJXIGIjlK1PWOMsHHGFyp1qFqdNgoStTWukrW1da6StYTfrEv7ZeNs3_wr2b2A0p5fPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984328073</pqid></control><display><type>article</type><title>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kowalik-Klimczak, A ; Gierycz, P</creator><creatorcontrib>Kowalik-Klimczak, A ; Gierycz, P</creatorcontrib><description>The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2017.456</identifier><identifier>PMID: 29210699</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Adsorption ; Charge density ; Chemical cleaning ; Chemistry ; Chromium ; Cleaning ; Desalination ; Filtration - instrumentation ; Hydrogen-Ion Concentration ; Ions ; Laboratories ; Membrane permeability ; Membranes ; Membranes, Artificial ; Nanofiltration ; Nanotechnology ; Osmosis ; Permeability ; Permeability coefficient ; pH effects ; Recovery ; Removal ; Roughness ; Saline solutions ; Scaling ; Science ; Sodium Chloride - chemistry ; Solutions ; Studies ; Surface structure ; Thin films ; Water - chemistry ; Zeta potential</subject><ispartof>Water science and technology, 2017-12, Vol.76 (11-12), p.3135-3141</ispartof><rights>Copyright IWA Publishing Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</citedby><cites>FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29210699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalik-Klimczak, A</creatorcontrib><creatorcontrib>Gierycz, P</creatorcontrib><title>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed.</description><subject>Adsorption</subject><subject>Charge density</subject><subject>Chemical cleaning</subject><subject>Chemistry</subject><subject>Chromium</subject><subject>Cleaning</subject><subject>Desalination</subject><subject>Filtration - instrumentation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ions</subject><subject>Laboratories</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Osmosis</subject><subject>Permeability</subject><subject>Permeability coefficient</subject><subject>pH effects</subject><subject>Recovery</subject><subject>Removal</subject><subject>Roughness</subject><subject>Saline solutions</subject><subject>Scaling</subject><subject>Science</subject><subject>Sodium Chloride - chemistry</subject><subject>Solutions</subject><subject>Studies</subject><subject>Surface structure</subject><subject>Thin films</subject><subject>Water - chemistry</subject><subject>Zeta potential</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkE1LAzEURYMotlZ3riXgpoJTk5dpJllK8aNQcKHuhJAmGZ0yM6nJjNJ_b0qrC1dvcQ-X-w5C55RMgHJ-8x27CRBaTPIpP0BDKiXPZMHgEA0JFCyjAGyATmJcEUIKlpNjNAAJlHAph-jt2ei6at-xL3GrW19WdRd0V_kWN65ZBt26iPvoLC59wOYj-Kbqm_F8Pr_CCYo4OOO_XNjgMkU46rrD0df9tiGeoqNS19Gd7e8Ivd7fvcwes8XTw3x2u8gMmxZdBtaByZei1FCkjaYQ1pROaqCMSp1-1AIsFbm0hAOZFpZJAC4otY47CZqN0HjXuw7-s3exU00VjavrtN73UdHkI-dECJrQy3_oyvehTesSJXIGIjlK1PWOMsHHGFyp1qFqdNgoStTWukrW1da6StYTfrEv7ZeNs3_wr2b2A0p5fPY</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kowalik-Klimczak, A</creator><creator>Gierycz, P</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</title><author>Kowalik-Klimczak, A ; Gierycz, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Charge density</topic><topic>Chemical cleaning</topic><topic>Chemistry</topic><topic>Chromium</topic><topic>Cleaning</topic><topic>Desalination</topic><topic>Filtration - instrumentation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ions</topic><topic>Laboratories</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Osmosis</topic><topic>Permeability</topic><topic>Permeability coefficient</topic><topic>pH effects</topic><topic>Recovery</topic><topic>Removal</topic><topic>Roughness</topic><topic>Saline solutions</topic><topic>Scaling</topic><topic>Science</topic><topic>Sodium Chloride - chemistry</topic><topic>Solutions</topic><topic>Studies</topic><topic>Surface structure</topic><topic>Thin films</topic><topic>Water - chemistry</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalik-Klimczak, A</creatorcontrib><creatorcontrib>Gierycz, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalik-Klimczak, A</au><au>Gierycz, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>76</volume><issue>11-12</issue><spage>3135</spage><epage>3141</epage><pages>3135-3141</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>29210699</pmid><doi>10.2166/wst.2017.456</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0273-1223
ispartof Water science and technology, 2017-12, Vol.76 (11-12), p.3135-3141
issn 0273-1223
1996-9732
language eng
recordid cdi_proquest_miscellaneous_1973460881
source MEDLINE; EZB-FREE-00999 freely available EZB journals
subjects Adsorption
Charge density
Chemical cleaning
Chemistry
Chromium
Cleaning
Desalination
Filtration - instrumentation
Hydrogen-Ion Concentration
Ions
Laboratories
Membrane permeability
Membranes
Membranes, Artificial
Nanofiltration
Nanotechnology
Osmosis
Permeability
Permeability coefficient
pH effects
Recovery
Removal
Roughness
Saline solutions
Scaling
Science
Sodium Chloride - chemistry
Solutions
Studies
Surface structure
Thin films
Water - chemistry
Zeta potential
title Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20of%20nanofiltration%20membranes%20used%20for%20chromium(III)%20ions%20recovery%20from%20salt%20solutions&rft.jtitle=Water%20science%20and%20technology&rft.au=Kowalik-Klimczak,%20A&rft.date=2017-12-01&rft.volume=76&rft.issue=11-12&rft.spage=3135&rft.epage=3141&rft.pages=3135-3141&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2017.456&rft_dat=%3Cproquest_cross%3E1984328073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984328073&rft_id=info:pmid/29210699&rfr_iscdi=true