Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions
The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The D...
Gespeichert in:
Veröffentlicht in: | Water science and technology 2017-12, Vol.76 (11-12), p.3135-3141 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 3141 |
---|---|
container_issue | 11-12 |
container_start_page | 3135 |
container_title | Water science and technology |
container_volume | 76 |
creator | Kowalik-Klimczak, A Gierycz, P |
description | The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed. |
doi_str_mv | 10.2166/wst.2017.456 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1973460881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1984328073</sourcerecordid><originalsourceid>FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</originalsourceid><addsrcrecordid>eNpdkE1LAzEURYMotlZ3riXgpoJTk5dpJllK8aNQcKHuhJAmGZ0yM6nJjNJ_b0qrC1dvcQ-X-w5C55RMgHJ-8x27CRBaTPIpP0BDKiXPZMHgEA0JFCyjAGyATmJcEUIKlpNjNAAJlHAph-jt2ei6at-xL3GrW19WdRd0V_kWN65ZBt26iPvoLC59wOYj-Kbqm_F8Pr_CCYo4OOO_XNjgMkU46rrD0df9tiGeoqNS19Gd7e8Ivd7fvcwes8XTw3x2u8gMmxZdBtaByZei1FCkjaYQ1pROaqCMSp1-1AIsFbm0hAOZFpZJAC4otY47CZqN0HjXuw7-s3exU00VjavrtN73UdHkI-dECJrQy3_oyvehTesSJXIGIjlK1PWOMsHHGFyp1qFqdNgoStTWukrW1da6StYTfrEv7ZeNs3_wr2b2A0p5fPY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1984328073</pqid></control><display><type>article</type><title>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Kowalik-Klimczak, A ; Gierycz, P</creator><creatorcontrib>Kowalik-Klimczak, A ; Gierycz, P</creatorcontrib><description>The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed.</description><identifier>ISSN: 0273-1223</identifier><identifier>EISSN: 1996-9732</identifier><identifier>DOI: 10.2166/wst.2017.456</identifier><identifier>PMID: 29210699</identifier><language>eng</language><publisher>England: IWA Publishing</publisher><subject>Adsorption ; Charge density ; Chemical cleaning ; Chemistry ; Chromium ; Cleaning ; Desalination ; Filtration - instrumentation ; Hydrogen-Ion Concentration ; Ions ; Laboratories ; Membrane permeability ; Membranes ; Membranes, Artificial ; Nanofiltration ; Nanotechnology ; Osmosis ; Permeability ; Permeability coefficient ; pH effects ; Recovery ; Removal ; Roughness ; Saline solutions ; Scaling ; Science ; Sodium Chloride - chemistry ; Solutions ; Studies ; Surface structure ; Thin films ; Water - chemistry ; Zeta potential</subject><ispartof>Water science and technology, 2017-12, Vol.76 (11-12), p.3135-3141</ispartof><rights>Copyright IWA Publishing Dec 2017</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</citedby><cites>FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29210699$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kowalik-Klimczak, A</creatorcontrib><creatorcontrib>Gierycz, P</creatorcontrib><title>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</title><title>Water science and technology</title><addtitle>Water Sci Technol</addtitle><description>The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed.</description><subject>Adsorption</subject><subject>Charge density</subject><subject>Chemical cleaning</subject><subject>Chemistry</subject><subject>Chromium</subject><subject>Cleaning</subject><subject>Desalination</subject><subject>Filtration - instrumentation</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ions</subject><subject>Laboratories</subject><subject>Membrane permeability</subject><subject>Membranes</subject><subject>Membranes, Artificial</subject><subject>Nanofiltration</subject><subject>Nanotechnology</subject><subject>Osmosis</subject><subject>Permeability</subject><subject>Permeability coefficient</subject><subject>pH effects</subject><subject>Recovery</subject><subject>Removal</subject><subject>Roughness</subject><subject>Saline solutions</subject><subject>Scaling</subject><subject>Science</subject><subject>Sodium Chloride - chemistry</subject><subject>Solutions</subject><subject>Studies</subject><subject>Surface structure</subject><subject>Thin films</subject><subject>Water - chemistry</subject><subject>Zeta potential</subject><issn>0273-1223</issn><issn>1996-9732</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2017</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNpdkE1LAzEURYMotlZ3riXgpoJTk5dpJllK8aNQcKHuhJAmGZ0yM6nJjNJ_b0qrC1dvcQ-X-w5C55RMgHJ-8x27CRBaTPIpP0BDKiXPZMHgEA0JFCyjAGyATmJcEUIKlpNjNAAJlHAph-jt2ei6at-xL3GrW19WdRd0V_kWN65ZBt26iPvoLC59wOYj-Kbqm_F8Pr_CCYo4OOO_XNjgMkU46rrD0df9tiGeoqNS19Gd7e8Ivd7fvcwes8XTw3x2u8gMmxZdBtaByZei1FCkjaYQ1pROaqCMSp1-1AIsFbm0hAOZFpZJAC4otY47CZqN0HjXuw7-s3exU00VjavrtN73UdHkI-dECJrQy3_oyvehTesSJXIGIjlK1PWOMsHHGFyp1qFqdNgoStTWukrW1da6StYTfrEv7ZeNs3_wr2b2A0p5fPY</recordid><startdate>20171201</startdate><enddate>20171201</enddate><creator>Kowalik-Klimczak, A</creator><creator>Gierycz, P</creator><general>IWA Publishing</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QH</scope><scope>7UA</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>H96</scope><scope>H97</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>L.G</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M7S</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope></search><sort><creationdate>20171201</creationdate><title>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</title><author>Kowalik-Klimczak, A ; Gierycz, P</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c357t-2de2c4b8fa27000c78dcfe9a21319a166a82d1849d062057d39226811de6e92a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2017</creationdate><topic>Adsorption</topic><topic>Charge density</topic><topic>Chemical cleaning</topic><topic>Chemistry</topic><topic>Chromium</topic><topic>Cleaning</topic><topic>Desalination</topic><topic>Filtration - instrumentation</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ions</topic><topic>Laboratories</topic><topic>Membrane permeability</topic><topic>Membranes</topic><topic>Membranes, Artificial</topic><topic>Nanofiltration</topic><topic>Nanotechnology</topic><topic>Osmosis</topic><topic>Permeability</topic><topic>Permeability coefficient</topic><topic>pH effects</topic><topic>Recovery</topic><topic>Removal</topic><topic>Roughness</topic><topic>Saline solutions</topic><topic>Scaling</topic><topic>Science</topic><topic>Sodium Chloride - chemistry</topic><topic>Solutions</topic><topic>Studies</topic><topic>Surface structure</topic><topic>Thin films</topic><topic>Water - chemistry</topic><topic>Zeta potential</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kowalik-Klimczak, A</creatorcontrib><creatorcontrib>Gierycz, P</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aqualine</collection><collection>Water Resources Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Engineering Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><jtitle>Water science and technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kowalik-Klimczak, A</au><au>Gierycz, P</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions</atitle><jtitle>Water science and technology</jtitle><addtitle>Water Sci Technol</addtitle><date>2017-12-01</date><risdate>2017</risdate><volume>76</volume><issue>11-12</issue><spage>3135</spage><epage>3141</epage><pages>3135-3141</pages><issn>0273-1223</issn><eissn>1996-9732</eissn><abstract>The effect of membranes' structure on the efficiency of chromium(III) ions recovery from salt solution at low pH and the efficiency of chemical cleaning of these membranes were analyzed in this work. The nanofiltration membranes (DL and HL) used in this study were provided by GE Osmonics. The DL membrane had an irregular, dense support layer structure, while the HL membrane had a loose one. In the case of the DL membrane, it was found that, under tested solutions, the layer of mineral scale formed on the surface gradually decreases the membrane permeability coefficient. In the case of the DL membrane, the scaling was observed only on the surface. On the other hand, a small roughness (118Å) and low density charge (zeta potential at level -4) of the HL membrane causes an uneven growth in deposits and, consequently, irregular nature of the surface structure which hinders the removal of accumulated sediment from the tested membranes' surface. Additionally, the loose structure of the support layer of HL membrane contributes to its internal scaling. Consequently, the permanently loose structure of the HL membrane permeability coefficient was observed.</abstract><cop>England</cop><pub>IWA Publishing</pub><pmid>29210699</pmid><doi>10.2166/wst.2017.456</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0273-1223 |
ispartof | Water science and technology, 2017-12, Vol.76 (11-12), p.3135-3141 |
issn | 0273-1223 1996-9732 |
language | eng |
recordid | cdi_proquest_miscellaneous_1973460881 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals |
subjects | Adsorption Charge density Chemical cleaning Chemistry Chromium Cleaning Desalination Filtration - instrumentation Hydrogen-Ion Concentration Ions Laboratories Membrane permeability Membranes Membranes, Artificial Nanofiltration Nanotechnology Osmosis Permeability Permeability coefficient pH effects Recovery Removal Roughness Saline solutions Scaling Science Sodium Chloride - chemistry Solutions Studies Surface structure Thin films Water - chemistry Zeta potential |
title | Scaling of nanofiltration membranes used for chromium(III) ions recovery from salt solutions |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T06%3A36%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Scaling%20of%20nanofiltration%20membranes%20used%20for%20chromium(III)%20ions%20recovery%20from%20salt%20solutions&rft.jtitle=Water%20science%20and%20technology&rft.au=Kowalik-Klimczak,%20A&rft.date=2017-12-01&rft.volume=76&rft.issue=11-12&rft.spage=3135&rft.epage=3141&rft.pages=3135-3141&rft.issn=0273-1223&rft.eissn=1996-9732&rft_id=info:doi/10.2166/wst.2017.456&rft_dat=%3Cproquest_cross%3E1984328073%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1984328073&rft_id=info:pmid/29210699&rfr_iscdi=true |